147. On Torus Cohomotopy Groups

By Kiyoshi AOKI

(Comm. by Z. SUETUNA, M.J.A., Oct. 12, 1954)

1. The main object of this note is an application of my theorem in the note [1]. Torus homotopy groups are defined by Fox [2], [3]; but in this note I have adopted another meaning of the torus, and the methods of the paper are strongly influenced by Spanier's paper [4].

2. In this section and the followings, I will use the definitions and lemmas of my note [1], which we refer to as [D].

Lemma 2.1. Let (X, A) be a compact pair with dim (X-A)<4n-1. If $\alpha, \beta, \alpha', \beta': (X, A) \to (T^{2n}, q)$ with $\alpha \simeq \alpha'$ and $\beta \simeq \beta'$ and if $g: (X, A) \to (T^{2n} \lor T^{2n}, (q, q))$ is a normalization of $\alpha \times \beta$ and g': $(X, A) \to (T^{2n} \lor T^{2n}, (q, q))$ is a normalization of $\alpha' \times \beta'$, then $\Omega g \simeq \Omega g'$.

Proof. Since $a \simeq a'$ and $\beta \simeq \beta'$, $a \times \beta \simeq a' \times \beta'$. Then $g \simeq a \times \beta \simeq a' \times \beta' \simeq g'$. Hence, there is a map

$$F: (X \times I, A \times I) \rightarrow (T^{2n} \times T^{2n}, (q, q))$$

such that

$$F(x, 0)=g(x)$$

 $F(x, 1)=g'(x)$ for all $x \in X$.

Then $(X \times 0) \cup (X \times 1) \subset F^{-1}(T^{2n} \vee T^{2n})$, by [D], Lemma 2.3, dim M < 4n for any closed $M \subset X \times I - A \times I$. Hence by [D] Theorem 3.5, a normalization G of F exists such that G(x,t) = F(x,t) for $(x,t) \in F^{-1}$ $(T^{2n} \vee T^{2n})$. That is, there is a map

$$G: (X \times I, A \times I) \rightarrow (T^{2n} \vee T^{2n}, (q, q))$$

such that

$$egin{array}{ll} G(x,0)=F(x,0)=g(x)\ G(x,1)=F(x,1)=g'(x) \end{array} ext{ for all } x\in X. \end{array}$$

Then $\Omega G: (X \times I, A \times I) \to (T^{2n}, q)$ is a homotopy between Ωg and $\Omega g'$.

Theorem 2.2. If (X, A) is a compact pair with dim (X-A) < 2n-1, the homotopy classes $\{a\}$ of maps α of (X, A) into (T^{2n}, q) form an abelian group with the law of composition $\{a\} + \{\beta\} = \{\alpha < f > \beta\}$, where f is an arbitrary normalization of $\alpha \times \beta$.

Proof. [D] Theorem 3.5 implies that a normalization f of $a \times \beta$ exists. Lemma 2.1 of the present note shows that $\{a < f > \beta\}$ does not depend on the choice of $a \in \{a\}, \beta \in \{\beta\}$ nor upon the normalization f involved. Therefore, the class $\{a < f > \beta\}$ is uniquely determined by the class $\{a\}$ and $\{\beta\}$.

(a) Commutativity. Let F be a normalizing homotopy for $a \times \beta$. Let $w: (T^{2n} \times T^{2n}, (q,q)) \rightarrow (T^{2n} \times T^{2n}, (q,q))$ be defined by w(y, y') = (y', y). Then wF is a normalizing homotopy for $\beta \times \alpha$. Hence, if f is the normalization of $\beta \times \alpha$ determined by F, wf is the normalization of $\beta \times \alpha$ determined by F, wf is the normalization of $\beta \times \alpha$ determined by wF. Since $\Omega w(z) = \Omega(z)$ for $z \in T^{2n} \vee T^{2n}$, we see that

 $a < f > \beta = \Omega f = \Omega w f = \beta < w f > a.$

Therefore,

 $\{\alpha\} + \{\beta\} = \{\beta\} + \{\alpha\}.$

(b) Associativity. Let $\alpha, \beta, \gamma: (X, A) \to (T^{2n}, q)$ be any three maps. Then $\alpha \times \beta \times \gamma: (X, A) \to (T^{2n} \times T^{2n} \times T^{2n}, (q, q, q))$. Subdivide $T^{2n} \times T^{2n} \times T^{2n}$ $\times T^{2n}$ simplicially so that (q, q, q) is a vertex and $(\bar{q}, \bar{q}, q) \cup T^{2n} \times T^{2n} \times \bar{p} \times p \cup T^{2n} \times T^{2n} \times p \times \bar{p} \cup T^{2n} \times \bar{p} \times p \times T^{2n} \cup T^{2n} \times T^{2n} \cup \bar{p} \times p \times T^{2n} \cup T^{2n} \times T^{2n} \to p \times T^{2n} \cup T^{2n} \times T^{2n} \times T^{2n} \to p \times T^{2n} \cup T^{2n} \times T^{2n} \times T^{2n} \to p \times T^{2n} \to T^{2n} \times T^{2n} \times T^{2n} \times T^{2n} \times T^{2n} \times T^{2n} \times T^{2n} \to p \times T^{2n} \to T^{2n} \times T^{2n} \times T^{2n} \times T^{2n} \times T^{2n}$, where its closure $T^{2n} \times T^{2n} \times \bar{\sigma}^{2n} \cup T^{2n} \times \bar{\sigma}^{2n} \times T^{2n} \to T$

$$g: (X, A) \rightarrow (T^{2n} \times T^{2n} \times T^{2n}, (q, q, q))$$

such that $\alpha \times \beta \times \gamma \simeq g$ and

$$g(X) \subset T^{2n} \times T^{2n} \times T^{2n} - T^{2n} \times T^{2n} \times \sigma \cup T^{2n} \times \sigma \times T^{2n} \cup \sigma \times T^{2n} \times T^{2n}.$$

[D] Theorem 3.2 shows that there is a map

$$g': (X, A) \rightarrow (T^{2n} \times T^{2n} \times T^{2n}, (q, q, q))$$

such that $g' \simeq g$ and $g'(X) \subset (T^{2n} \times T^{2n} \times q) \cup (T^{2n} \times q \times T^{2n}) \cup (q \times T^{2n} \times T^{2n}).$

 \mathbf{Let}

$$egin{aligned} &M_1\!=\!g'^{-1}\!(q\! imes\!T^{2n}\! imes\!T^{2n}), \ M_2\!=\!g'^{-1}\!(T^{2n}\! imes\!q\! imes\!T^{2n}), \ &M_3\!=\!g'^{-1}\!(T^{2n}\! imes\!T^{2n}\! imes\!q). \end{aligned}$$

Then M_i is a closed subset of X, so dim $(M_i - A) < 4n$. Let $g'_i = g' \mid M_i$ (i=1,2,3). By [D] Theorem 3.5, there exists a normalization h_i of g'_i such that $h_i \simeq g'_i$ rel $g'_i^{-1}(T^{2n} \vee T^{2n} \vee T^{2n})$ where $T^{2n} \vee T^{2n} \vee T^{2n} = (T^{2n} \times q \times q) \cup (q \times T^{2n} \times q) \cup (q \times q \times T^{2n})$.

Note that $g_i'^{-1}(T^{2n} \vee T^{2n} \vee T^{2n}) = M_i \cap (M_j \cup M_k)$ for (i, j, k) = (1, 2, 3). Define

$$h: (X, A) \rightarrow (T^{2n} \times T^{2n} \times T^{2n}, (q, q, q))$$

by

$$h(x) = h_i(x)$$
 if $x \in M_i$ $(i=1, 2, 3)$

Then $h(X) \subset T^{2n} \vee T^{2n} \vee T^{2n}$ and $h | M_i \simeq g' | M_i$ rel $M_i \cap (M_j \cup M_k)$. Hence, these homotopies can be put together to give a homotopy $h \simeq g'$. Therefore, $h \simeq a \times \beta \times \gamma$.

Let $\pi_{ij}: (T^{2n} \times T^{2n} \times T^{2n}, (q, q, q)) \rightarrow (T^{2n} \times T^{2n}, (q, q))$ be defined by π_{ij} $(y_1, y_2, y_3) = (y_i, y_j)$. Then $\pi_{12}(a \times \beta \times \gamma) = a \times \beta$, $\pi_{12}h \simeq a \times \beta$, and $\pi_{12}h(X)$ K. Aoki

{Vol. 30,

 $\subset T^{2n} \vee T^{2n}$. Hence $\pi_{12}h$ is a normalization of $\alpha \times \beta$, so $\alpha < \pi_{12}h > \beta$ determines the sum of α and β .

Let $\pi_i: (T^{2n} \times T^{2n} \times T^{2n}, (q, q, q)) \rightarrow (T^{2n}, q)$ be defined by

 $\pi_i(y_1, y_2, y_3) = y_i.$

Then

 $\pi_3h \simeq \pi_3(a \times \beta \times \gamma) = \gamma$, so $(a < \pi_{12}h > \beta) \simeq \Omega \pi_{12}h$. Let $\Omega_{12}: (T^{2n} \vee T^{2n} \vee T^{2n}, (q, q, q)) \rightarrow (T^{2n} \vee T^{2n}, (q, q))$ be defined by

 $\Omega_{12}(y_1, y_2, y_3) = (\Omega(y_1, y_2), y_3).$

It is then clear that $\mathcal{Q}_{12}h = (\mathcal{Q}\pi_{12}h) \times \pi_3h$. Hence $[(\mathcal{Q}\pi_{12}h) \times \pi_3h](X) \subset T^{2n} \vee T^{2n}$ so that $(\mathcal{Q}\pi_{12}h) \times \pi_3h$ is already normalized. Then

$$(\alpha < \pi_{12}h > \beta) < \mathcal{Q}_{12}h > \gamma = \mathcal{Q}\mathcal{Q}_{12}h.$$

Similarly

 $\alpha < \Omega_{23}h > (\beta < \pi_{23}h > \gamma) = \Omega \Omega_{23}h.$

Since $\Omega \Omega_{12} = \Omega \Omega_{23}$, it follows that

$$(\{\alpha\} + \{\beta\}) + \{\gamma\} = \{\alpha\} + (\{\beta\} + \{\gamma\}).$$

(c) Existence of identity. Let e denote the map of (X, A) into (T^{2n}, q) defined by e(x) = q for all $x \in X$. If $\alpha: (X, A) \to (T^{2n}, q)$ is arbitrary, $(e \times \alpha)(X) \subset T^{2n} \vee T^{2n}$ so $e \times \alpha$ is normalized. Hence, $\{e\} + \{a\} = \{e < e \times \alpha > \alpha\} = \{\alpha\}$, so $\{e\}$ is an identity.

(d) Existence of inverses. Let $a: (X, A) \to (T^{2n}, q)$. By [D] Lemma 2.6, there exists a normalization a' of a such that rel $a^{-1}(S^n \vee S^n)$. The reflection of S^n in the equatorial plane of S^{n-1} is denoted by ρ_n , and $\rho_n \otimes \rho_n$ denotes the sum of the reflection of $S^n \times p$ and $p \times S^n$. It will be shown that $\{a'\} + \{\rho_n \otimes \rho_n(a')\} = \{e\}$. Let $\theta^+: (S^n \times p \times I \cup p \times S^n \times I, p \times p \times I) \to (S^n \times p \cup p \times S^n, p \times p)$ be a contraction of $E^n_+ \times p \cup p \times E^n_+$ over itself into $p \times p$. Then θ_1^+ maps $(S^n \times p \cup p \times S^n, E^n_+ \times p \cup p \times E^n_+)$ into $(S^n \times p \cup p \times S^n, p \times p)$. We see that $\theta_1^+ a' \simeq \theta_0^+ a' = a'$ and $\theta_1^+(\rho_n \otimes \rho_n(a')) \simeq \rho_n \otimes \rho_n(a')$. Therefore, $\{a'\} + \{\rho_n \otimes \rho_n(a')\} = \{\theta_1^+ a'\} + \{\theta_1^+ \rho_n \otimes \rho_n(a')\}$. Let $M_1 = a'^{-1}(E^n_+ \times p \cup p \times E^n_+)$ and $M_2 = a'^{-1}$ $(E^n_- \times p \cup p \times E^n_-)$, Then $\theta_1^+ a' \times \theta_1^+(\rho_n \otimes \rho_n(a'))$ maps M_2 into $p \times p$. Hence, $\theta_1^+ a' \times \theta_1^+(\rho_n \otimes \rho_n(a'))$ maps X into $T^{2n} \vee T^{2n}$ so is normalized.

Then

It follows that $\mathcal{Q}[\theta_1^+\alpha' \times \theta_1^+(\rho_n \otimes \rho_n(\alpha'))] \mid M_1 = \theta_1^+(\rho_n \otimes \rho_n(\alpha')) \mid M_1 \simeq \rho_n \otimes \rho_n(\alpha') \mid M_1$ and $\mathcal{Q}[\theta_1^+\alpha' \times \theta_1^+(\rho_n \otimes \rho_n(\alpha'))] \mid M_2 = \theta_1^+\alpha' \mid M_2 = \alpha' \mid M_2$, and the two homotopies agree on $M_1 \cap M_2$. Define

696

No. 8]

$$h: (X, A) \to (T^{2n}, q)$$

by

$$h(x) = egin{cases}
ho_n \otimes
ho_n(lpha')(x) & ext{ for } x \in M_2 \ lpha'(x) & ext{ for } x \in M_1. \end{cases}$$

Then $\{\theta_1^+\alpha'\} + \{\theta_1^+(\rho_n \otimes \rho_n(\alpha'))\} = \{h\}$. Since $h(X) \subset E_-^n \times p \cup p \times E^n$, it follows that $h \simeq e$, so $\{\alpha'\} + \{\rho_n \otimes \rho_n(\alpha')\} = \{e\}$.

The group whose existence was proved in Theorem 2.2 is called the 2nth torus cohomotopy group of (X, A).

References

[1] K. Aoki: Note on deformation retract, Proc. Japan Acad., **30**, 538-541 (1954).

[2] R. H. Fox: Torus homotopy groups, Proc. Nat. Acad. Sci., 31, 71-74 (1944).

[3] R. H. Fox: Homotopy groups and torus homotopy groups, Ann. Math., 49 (1948).

[4] E. Spanier: Borsuk's cohomotopy groups, Ann. Math., 50, 203-245 (1949)