147. On Torus Cohomotopy Groups

By Kiyoshi Aoki

(Comm. by Z. Suetuna, m.J.A., Oct. 12, 1954)

1. The main object of this note is an application of my theorem in the note [1]. Torus homotopy groups are defined by Fox [2], [3]; but in this note I have adopted another meaning of the torus, and the methods of the paper are strongly influenced by Spanier's paper [4].
2. In this section and the followings, I will use the definitions and lemmas of my note [1], which we refer to as $[D]$.

Lemma 2.1. Let (X, A) be a compact pair with $\operatorname{dim}(X-A)$ $<4 n-1$. If $\alpha, \beta, \alpha^{\prime}, \beta^{\prime}:(X, A) \rightarrow\left(T^{2 n}, q\right)$ with $\alpha \simeq \alpha^{\prime}$ and $\beta \simeq \beta^{\prime}$ and if $g:(X, A) \rightarrow\left(T^{2 n} \vee T^{2 n},(q, q)\right)$ is a normalization of $\alpha \times \beta$ and $g^{\prime}:$ $(X, A) \rightarrow\left(T^{2 n} \vee T^{2 n},(q, q)\right)$ is a normalization of $\alpha^{\prime} \times \beta^{\prime}$, then $\Omega g \simeq \Omega g^{\prime}$.

Proof. Since $\alpha \simeq \alpha^{\prime}$ and $\beta \simeq \beta^{\prime}, \alpha \times \beta \simeq \alpha^{\prime} \times \beta^{\prime}$. Then $g \simeq \alpha \times \beta \simeq$ $\alpha^{\prime} \times \beta^{\prime} \simeq g^{\prime}$. Hence, there is a map

$$
F:(X \times I, A \times I) \rightarrow\left(T^{2 n} \times T^{2 n},(q, q)\right)
$$

such that

$$
\begin{aligned}
& F(x, 0)=g(x) \\
& F(x, 1)=g^{\prime}(x)
\end{aligned} \quad \text { for all } x \in X .
$$

Then $(X \times 0) \cup(X \times 1) \subset F^{-1}\left(T^{2 n} \vee T^{2 n}\right)$, by [D], Lemma 2.3, $\operatorname{dim} M<4 n$ for any closed $M \subset X \times I-A \times I$. Hence by [D] Theorem 3.5, a normalization G of F exists such that $G(x, t)=F(x, t)$ for $(x, t) \in F^{-1}$ $\left(T^{2 n} \vee T^{2 n}\right)$. That is, there is a map

$$
G:(X \times I, A \times I) \rightarrow\left(T^{2 n} \vee T^{2 n},(q, q)\right)
$$

such that

$$
\begin{aligned}
& G(x, 0)=F(x, 0)=g(x) \\
& G(x, 1)=F(x, 1)=g^{\prime}(x)
\end{aligned} \quad \text { for all } x \in X .
$$

Then $\Omega G:(X \times I, A \times I) \rightarrow\left(T^{2 n}, q\right)$ is a homotopy between Ωg and Ωg^{\prime}.
Theorem 2.2. If (X, A) is a compact pair with $\operatorname{dim}(X-A)<2 n-1$, the homotopy classes $\{\alpha\}$ of maps α of (X, A) into ($T^{2 n}, q$) form an abelian group with the law of composition $\{\alpha\}+\{\beta\}=\{\alpha<f>\beta\}$, where f is an arbitrary normalization of $\alpha \times \beta$.

Proof. [D] Theorem 3.5 implies that a normalization f of $\alpha \times \beta$ exists. Lemma 2.1 of the present note shows that $\{\alpha<f>\beta\}$ does not depend on the choice of $\alpha \in\{\alpha\}, \beta \in\{\beta\}$ nor upon the normalization f involved. Therefore, the class $\{\alpha<f>\beta\}$ is uniquely determined by the class $\{\alpha\}$ and $\{\beta\}$.
(a) Commutativity. Let F be a normalizing homotopy for $\alpha \times \beta$. Let $w:\left(T^{12 n} \times T^{2 n},(q, q)\right) \rightarrow\left(T^{2 n} \times T^{2 n},(q, q)\right)$ be defined by $w\left(y, y^{\prime}\right)=\left(y^{\prime}, y\right)$. Then $w F$ is a normalizing homotopy for $\beta \times \alpha$. Hence, if f is the normalization of $\beta \times \alpha$ determined by $F, w f$ is the normalization of $\beta \times \alpha$ determined by $w F$. Since $\Omega w(z)=\Omega(z)$ for $z \in T^{2 n} \vee T^{2 n}$, we see that

$$
\alpha<f>\beta=\Omega f=\Omega w f=\beta<w f>\alpha
$$

Therefore,

$$
\{\alpha\}+\{\beta\}=\{\beta\}+\{\alpha\} .
$$

(b) Associativity. Let $\alpha, \beta, \gamma:(X, A) \rightarrow\left(T^{2 n}, q\right)$ be any three maps. Then $\alpha \times \beta \times \gamma:(X, A) \rightarrow\left(T^{2 n} \times T^{2 n} \times T^{2 n},(q, q, q)\right)$. Subdivide $T^{2 n} \times T^{2 n}$ $\times T^{2 n}$ simplicially so that (q, q, q) is a vertex and $(\bar{q}, \bar{q}, q) \cup T^{2 n} \times T^{2 n}$ $\times \bar{p} \times p \cup T^{2 n} \times T^{2 n} \times p \times \bar{p} \cup T^{2 n} \times \bar{p} \times p \times T^{2 n} \cup T^{2 n} \times p \times \bar{p} \times T^{2 n} \cup \bar{p} \times p \times T^{2 n}$ $\times T^{2 n} \cup p \times \bar{p} \times T^{2 n} \times T^{2 n}$ is in the interior of $T^{2 n} \times T^{2 n} \times \sigma^{2 n} \cup T^{2 n} \times \sigma^{2 n}$ $\times T^{2 n} \cup \sigma^{2 n} \times T^{2 n} \times T^{2 n}$, where its closure $T^{2 n} \times T^{2 n} \times \bar{\sigma}^{2 n} \cup T^{2 n} \times \bar{\sigma}^{2 n} \times T^{2 n}$ $\cup T^{2 n} \times T^{2 n} \times T^{2 n}$ does not meet (q, q, q). Since $\operatorname{dim}(X-A)<2 n-1<6 n$, [D] Lemma 3.4 shows that there is a map

$$
g:(X, A) \rightarrow\left(T^{2 n} \times T^{2 n} \times T^{2 n},(q, q, q)\right)
$$

such that $\alpha \times \beta \times \gamma \simeq g$ and

$$
g(X) \subset T^{2 n} \times T^{2 n} \times T^{2 n}-T^{2 n} \times T^{2 n} \times \sigma \cup T^{2 n} \times \sigma \times T^{2 n} \cup \sigma \times T^{2 n} \times T^{2 n}
$$

[D] Theorem 3.2 shows that there is a map

$$
g^{\prime}:(X, A) \rightarrow\left(T^{2 n} \times T^{2 n} \times T^{2 n},(q, q, q)\right)
$$

such that $g^{\prime} \simeq g$ and $g^{\prime}(X) \subset\left(T^{2 n} \times T^{2 n} \times q\right) \cup\left(T^{2 n} \times q \times T^{2 n}\right) \cup\left(q \times T^{2 n}\right.$ $\times T^{2 n}$).
Let

$$
\begin{gathered}
M_{1}=g^{\prime-1}\left(q \times T^{2 n} \times T^{2 n}\right), \quad M_{2}=g^{\prime-1}\left(T^{2 n} \times q \times T^{2 n}\right), \\
M_{3}=g^{\prime-1}\left(T^{2 n} \times T^{2 n} \times q\right) .
\end{gathered}
$$

Then M_{i} is a closed subset of X, so $\operatorname{dim}\left(M_{i}-A\right)<4 n$. Let $g_{i}^{\prime}=g^{\prime} \mid$ $M_{i}(i=1,2,3) . \quad$ By $[D]$ Theorem 3.5, there exists a normalization h_{i} of g_{i}^{\prime} such that $h_{i} \simeq g_{i}^{\prime}$ rel $g_{i}^{\prime-1}\left(T^{2 n} \vee T^{2 n} \vee T^{2 n}\right)$ where $T^{2 n} \vee T^{2 n} \vee T^{2 n}$ $=\left(T^{2 n} \times q \times q\right) \cup\left(q \times T^{2 n} \times q\right) \cup\left(q \times q \times T^{2 n}\right)$.
Note that $g_{i}^{\prime-1}\left(T^{2 n} \vee T^{2 n} \vee T^{2 n}\right)=M_{i} \cap\left(M_{j} \cup M_{k}\right)$ for $(i, j, k)=(1,2,3)$. Define

$$
h:(X, A) \rightarrow\left(T^{2 n} \times T^{2 n} \times T^{2 n},(q, q, q)\right)
$$

by

$$
h(x)=h_{i}(x) \quad \text { if } x \in M_{i} \quad(i=1,2,3)
$$

Then $h(X) \subset T^{2 n} \vee T^{2 n} \vee T^{2 n}$ and $h\left|M_{i} \simeq g^{\prime}\right| M_{i}$ rel $M_{i} \cap\left(M_{j} \cup M_{k}\right)$. Hence, these homotopies can be put together to give a homotopy $h \simeq g^{\prime}$. Therefore, $h \simeq \alpha \times \beta \times \gamma$.
Let $\pi_{i j}:\left(T^{2 n} \times T^{2 n} \times T^{2 n},(q, q, q)\right) \rightarrow\left(T^{2 n} \times T^{2 n},(q, q)\right)$ be defined by $\pi_{i j}$ $\left(y_{1}, y_{2}, y_{3}\right)=\left(y_{i}, y_{j}\right) . \quad$ Then $\pi_{12}(\alpha \times \beta \times \gamma)=\alpha \times \beta, \pi_{12} h \simeq \alpha \times \beta$, and $\pi_{12} h(X)$
$\subset T^{2 n} \vee T^{2 n}$. Hence $\pi_{12} h$ is a normalization of $\alpha \times \beta$, so $\alpha<\pi_{12} h>\beta$ determines the sum of α and β.
Let $\pi_{i}:\left(T^{2 n} \times T^{2 n} \times T^{2 n},(q, q, q)\right) \rightarrow\left(T^{2 n}, q\right)$ be defined by

$$
\pi_{i}\left(y_{1}, y_{2}, y_{3}\right)=y_{i}
$$

Then

$$
\pi_{3} h \simeq \pi_{3}(\alpha \times \beta \times \gamma)=\gamma, \text { so }\left(\alpha<\pi_{12} h>\beta\right) \simeq \Omega \pi_{12} h . \quad \text { Let } \Omega_{12}:\left(T^{2 n} \vee\right.
$$ $\left.T^{2 n} \vee T^{2 n},(q, q, q)\right) \rightarrow\left(T^{2 n} \vee T^{2 n},(q, q)\right)$ be defined by

$$
\Omega_{12}\left(y_{1}, y_{2}, y_{3}\right)=\left(\Omega\left(y_{1}, y_{2}\right), y_{3}\right)
$$

It is then clear that $\Omega_{12} h=\left(\Omega \pi_{12} h\right) \times \pi_{3} h$. Hence $\left[\left(\Omega \pi_{12} h\right) \times \pi_{3} h\right](X)$ $\subset T^{2 n} \vee T^{2 n}$ so that $\left(\Omega_{\pi_{12}} h\right) \times \pi_{3} h$ is already normalized.
Then

$$
\left(\alpha<\pi_{12} h>\beta\right)<\Omega_{12} h>\gamma=\Omega \Omega_{12} h .
$$

Similarly

$$
\alpha<\Omega_{23} h>\left(\beta<\pi_{23} h>\gamma\right)=\Omega \Omega_{23} h .
$$

Since $\Omega \Omega_{12}=\Omega \Omega_{23}$, it follows that

$$
(\{\alpha\}+\{\beta\})+\{\gamma\}=\{\alpha\}+(\{\beta\}+\{\gamma\}) .
$$

(c) Existence of identity. Let e denote the map of (X, A) into ($T^{2 n}, q$) defined by $e(x)=q$ for all $x \in X$. If $\alpha:(X, A) \rightarrow\left(T^{2 n}, q\right)$ is arbitrary, $(e \times \alpha)(X) \subset T^{2 n} \vee T^{2 n}$ so $e \times \alpha$ is normalized. Hence, $\{e\}$ $+\{\alpha\}=\{e<e \times \alpha>\alpha\}=\{\alpha\}$, so $\{e\}$ is an identity.
(d) Existence of inverses. Let $\alpha:(X, A) \rightarrow\left(T^{2 n}, q\right)$. By [D] Lemma 2.6, there exists a normalization α^{\prime} of α such that rel $\alpha^{-1}\left(S^{n} \vee S^{n}\right)$.

The reflection of S^{n} in the equatorial plane of S^{n-1} is denoted by ρ_{n}, and $\rho_{n} \otimes \rho_{n}$ denotes the sum of the reflection of $S^{n} \times p$ and $p \times S^{n}$. It will be shown that $\left\{\alpha^{\prime}\right\}+\left\{\rho_{n} \otimes \rho_{n}\left(\alpha^{\prime}\right)\right\}=\{e\}$. Let $\theta^{+}:\left(S^{n} \times p \times I \cup p\right.$ $\left.\times S^{n} \times I, p \times p \times I\right) \rightarrow\left(S^{n} \times p \cup p \times S^{n}, p \times p\right)$ be a contraction of $E_{+}^{n} \times p$ $\bigcup p \times E_{+}^{n}$ over itself into $p \times p$. Then θ_{1}^{+}maps ($S^{n} \times p \bigcup p \times S^{n}$, $E_{+}^{n} \times p \cup p \times E_{+}^{n}$) into ($S^{n} \times p \cup p \times S^{n}, p \times p$). We see that $\theta_{1}^{+} \alpha^{\prime} \simeq \theta_{0}^{+} \alpha^{\prime}$ $=\alpha^{\prime}$ and $\theta_{1}^{+}\left(\rho_{n} \otimes \rho_{n}\left(\alpha^{\prime}\right)\right) \simeq \rho_{n} \otimes \rho_{n}\left(\alpha^{\prime}\right)$. Therefore, $\left\{\alpha^{\prime}\right\}+\left\{\rho_{n} \otimes \rho_{n}\left(\alpha^{\prime}\right)\right\}$ $=\left\{\theta_{1}^{+} \alpha^{\prime}\right\}+\left\{\theta_{1}^{+} \rho_{n} \otimes \rho_{n}\left(\alpha^{\prime}\right)\right\}$. Let $M_{1}=\alpha^{\prime-1}\left(E_{+}^{n} \times p \bigcup p \times E_{+}^{n}\right)$ and $M_{2}=\alpha^{\prime-1}$ $\left(E_{-}^{n} \times p \cup p \times E_{-}^{n}\right)$, Then $\theta_{1}^{+} \alpha^{\prime}$ maps M_{1} into $p \times p$ and $\theta_{1}^{+}\left(\rho_{n} \otimes \rho_{n}\left(\alpha^{\prime}\right)\right)$ maps M_{2} into $p \times p$. Hence, $\theta_{1}^{+} \alpha^{\prime} \times \theta_{1}^{+}\left(\rho_{n} \otimes \rho_{n}\left(\alpha^{\prime}\right)\right)$ maps X into $T^{2 n} \vee T^{2 n}$ so is normalized.
Then

$$
\begin{gathered}
\left\{\theta_{1}^{+} \alpha^{\prime}\right\}+\left\{\theta_{1}^{+}\left(\rho_{n} \otimes \rho_{n}\left(\alpha^{\prime}\right)\right)\right\}=\left\{\Omega\left[\theta_{1}^{+} \alpha^{\prime} \times \theta_{1}^{+}\left(\rho_{n} \otimes \rho_{n}\left(\alpha^{\prime}\right)\right)\right]\right\} \text { and } \\
\Omega\left[\theta_{1}^{+} \alpha^{\prime} \times \theta_{1}^{+}\left(\rho_{n} \otimes \rho_{n}\left(\alpha^{\prime}\right)\right)\right](x)= \begin{cases}\theta_{1}^{+}\left(\rho_{n} \otimes \rho_{n}\left(\alpha^{\prime}\right)\right)(x) & \text { for } x \in M_{1} \\
\theta_{1}^{+} \alpha^{\prime}(x) & \text { for } x \in M_{2} .\end{cases}
\end{gathered}
$$

It follows that $\Omega\left[\theta_{1}^{+} \alpha^{\prime} \times \theta_{1}^{+}\left(\rho_{n} \otimes \rho_{n}\left(\alpha^{\prime}\right)\right)\right]\left|M_{1}=\theta_{1}^{+}\left(\rho_{n} \otimes \rho_{n}\left(\alpha^{\prime}\right)\right)\right| M_{1} \simeq \rho_{n} \otimes \rho_{n}$ $\left(\alpha^{\prime}\right) \mid M_{1}$ and $\Omega\left[\theta_{1}^{+} \alpha^{\prime} \times \theta_{1}^{+}\left(\rho_{n} \otimes \rho_{n}\left(\alpha^{\prime}\right)\right)\right]\left|M_{2}=\theta_{1}^{+} \alpha^{\prime}\right| M_{2}=\alpha^{\prime} \mid M_{2}$, and the two homotopies agree on $M_{1} \cap M_{2}$. Define

$$
h:(X, A) \rightarrow\left(T^{2 n}, q\right)
$$

by

$$
h(x)=\left\{\begin{array}{cl}
\rho_{n} \otimes \rho_{n}\left(\alpha^{\prime}\right)(x) & \text { for } x \in M_{2} \\
\alpha^{\prime}(x) & \text { for } x \in M_{1} .
\end{array}\right.
$$

Then $\left\{\theta_{1}^{+} \alpha^{\prime}\right\}+\left\{\theta_{1}^{+}\left(\rho_{n} \otimes \rho_{n}\left(\alpha^{\prime}\right)\right)\right\}=\{h\}$. Since $h(X) \subset E_{-}^{n} \times p \bigcup p \times E^{n}$, it follows that $h \simeq e$, so $\left\{\alpha^{\prime}\right\}+\left\{\rho_{n} \otimes \rho_{n}\left(\alpha^{\prime}\right)\right\}=\{e\}$.
The group whose existence was proved in Theorem 2.2 is called the $2 n$th torus cohomotopy group of (X, A).

References

[1] K. Aoki: Note on deformation retract, Proc. Japan Acad., 30, 538-541 (1954).
[2] R.H. Fox: Torus homotopy groups, Proc. Nat. Acad. Sci., 31, 71-74 (1944).
[3] R. H. Fox: Homotopy groups and torus homotopy groups, Ann. Math., 49 (1948).
[4] E. Spanier: Borsuk's cohomotopy groups, Ann. Math., 50, 203-245 (1949)

