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1. Introduction. S. Izumi and G. Sunouchi" proved the follow-
ing theorems concerning uniform convergence of Fourier series:

Theorem I. If

f(t)- f(t’)--o (1/log 1 ) as t, t’--x

then the Fourier series of f(t) converges uniformly at t=x.
Theorem II. If

1f(t) f(t’)- o (1/log log ] -t _-t-- i--) as t, t’-->x

and the nth Fourier coefficients are O((logn)/n) for a>0, then the
Fourier series of f(t) converges uniformly at t=x.

In this paper, we treat the case that the order of f(t)-f(t)

(lff( ) llff( 1 ))(a>0) andis o log
t--t’i

more generally o(lff(log-i-t,-t,
2. Theorem 1. Let O<a< l. If

f(t)-f(t’)--o(1/(logi-t:t,i-)) (t,t’O)

and the nth Fourier cocients of f(t) is of order O(eC/n), then
the Fourier series of f(t) converges uniformly at t=0.

Proof. We assume that x,0 and f(0)=0.

&(x,3=Afl[f(x+ t)+ f(x,-t)] sin ntdt + o(1)
t

]n B(log

sy, where N is he least number >1 such hat 2le, then i

Sinee f() is continuous, we have 1=o(1).

1) S. Izumi and G. Sunouchi: Notes on Fourier analysis (XLVIII): Uniform con-
vergence of Fourier series, TShoku Mathematical Journal, 3 (1951).
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- kr ,. sin nt dt,

where o--e (o,. By the first mean value theorem, for ln 0
2/n,

r o 2k+1 n

n

1 -/
-o

(logn) --o
2k+1
n

11 )-((logn)2k+l
We next prove K=o(1). Now

2 a cos ,x cos ,t dr,:-.= cl,,g/, t

taking absolute value

2k+1

ILKI 2 a., sin (n + ,)t + sin (n-,)t dt

] a n (sin (n + )t + sin (n- )t)dt
e (log n)a

TM n)a/n

2 ia n 1 + o(1).
= eTM’ n-vl

It is sufficient to prove that

According]y we have
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eo.0
O o(1).

g(log n)a- (log n)

Thus we have s(xD-o(1) as n.

3. Theorem 2. Let a>l. If
1-,-o(/(oo,_,))

and the nth ourier coecieuts of f(t) is of order
the Fourier series of f(t) converges uniformly a t=0.

Proof. As in the proof of Theorem 1, we may assume xO
and f(0)-0.

/n (log log

1 1+ J+K3 + o(1),

say, where B is the least number >1 such that e’c==")= is
odd. Then we have I=o(1) and

e(log log n)a_l
J J f(x. + t) +f(x.- t)-sin nt

(-? f x++t +f x--e de,
/

where $-er". Applying the first mean value theorem,

J=-2 f x.+k+O +f x. O
=0 nO +k n n, 1 {,(.+ ) ( )}=o 2k+l n n

+{,(. -o)-,(.- +1 -o)}+o1n n

o (log log n) 0 2# + 1 (log log n?
We shall next prove that

K= 2 a cos cos sin-d o (1).
/

K < a (sin (n + )t + sin(n- ,) t)) dt
=i

’/
t

N ’-J-n f(sin (n +.)t +sin (n-u)t)dt
/u
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2_n_n i _!_a_l+ la[ +o(1)

2 n

say, then

K1 + " a --0 (log n)’- e(,Og,Ogn)a+ 10g n e(’g’g’j,
=[/+/ n n n

c (K= + a 0 log n e(oo.+
XV=n+I .-n n n

Accordingly we get

(
hus he heorem is roved.

4. Theorem 3.
1

and if f(x) is of class @(n) then the Fourier series of f(t) uniformly
at t=O, where @(n)-O(n), p(n)-log(nS(n)/@(n)) and (n) are ono-
tone increasing to infinity as n.

Proofl As in the proof of previous theorems we assume x,O
and f(O)=O. Weput

+ ] + o(1)
/n O(n)/(n)

I+J+K] + o(),

where B is a real number 1 such that Bn(n)/@(n) is an odd
integer. Then we have I=o(1), and

{nO(n)/(n)}--

=o 2k + nt n

=o( 1 (-)/ 1 )=o(1),(n 0-2k1
where =#nO(n}/(n).
mean value theorem

n

n

We next prove K-o(1). By the second

2) A function f(x) is said to be of class (n) if

f(x+t) cos nt dt=O (1/(n))
uniformly for all x, n, a, b with b-a2z. Cf. J.P. Nash" Rice Institute Pamphlet
(1953); M. Sat6" Proc. Japan Acad., 30 (1954).
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K- 6(n) f’ [f(x+ t) +f(x,- t) sin nt dt
nO(n)

BO(n)/6(n)vr. Since f’(x+ t) sin nt dt-O(1/6(n)), wewhere have

a(n) (n)
This completes the proof of Theorem 3.

Corollarg 1. Let O< a<l. If
1 ) ) (t,t’O)

ad if f() i of elass ()-/e(, he he Fourier eie eo-
vee iorml at =0.

his follows from heorem 8, uin

(n)-n/e, (n)-e-’ (>1).
Corollar 2. Let a>O and k be an integer 8. If

ad if f() i of ela ()-/e
vere iforml a -0.

I wish to express my gratitude to Professor S. Izumi for his
suggestions and encouragement.

3) log (log x) logs x, log (log X)=log+ (k2).


