170. Uniform Convergence of Fourier Series. III

By Masako Satô
Mathematical Institute, Tokyo Metropolitan University, Japan
(Comm. by Z. Suetuna, m.J.a., Nov. 12, 1954)

1. Introduction. S. Izumi and G. Sunouchi ${ }^{15}$ proved the following theorems concerning uniform convergence of Fourier series:

Theorem I. If

$$
f(t)-f\left(t^{\prime}\right)=o\left(1 / \log \frac{1}{\left|t-t^{\prime}\right|}\right) \text { as } t, t^{\prime} \rightarrow x
$$

then the Fourier series of $f(t)$ converges uniformly at $t=x$.
Theorem II. If

$$
f(t)-f\left(t^{\prime}\right)=o\left(1 / \log \log \frac{1}{\left|t-t^{\prime}\right|}\right) \text { as } t, t^{\prime} \rightarrow x
$$

and the nth Fourier coefficients are $O\left((\log n)^{\alpha} / n\right)$ for $\alpha>0$, then the Fourier series of $f(t)$ converges uniformly at $t=x$.

In this paper, we treat the case that the order of $f(t)-f\left(t^{\prime}\right)$ is $o\left(1 /\left(\log \frac{1}{\left|t-t^{\prime}\right|}\right)^{\alpha}\right)(1>\alpha>0), o\left(1 /\left(\log \log \frac{1}{\left|t-t^{\prime}\right|}\right)^{\alpha}\right)(\alpha>0)$ and more generally $o\left(1 /\left(\log _{k} \frac{1}{\left|t-t^{\prime}\right|}\right)^{\alpha}\right)$.
2. Theorem 1. Let $0<\alpha<1$. If

$$
f(t)-f\left(t^{\prime}\right)=o\left(1 /\left(\log \frac{1}{\left|t-t^{\prime}\right|}\right)^{a}\right) \quad\left(t, t^{\prime} \rightarrow 0\right)
$$

and the nth Fourier coefficients of $f(t)$ is of order $O\left(e^{(\log n)^{\alpha}} / n\right)$, then the Fourier series of $f(t)$ converges uniformly at $t=0$.

Proof. We assume that $x_{n} \rightarrow 0$ and $f(0)=0$.

$$
\begin{aligned}
S_{n}\left(x_{n}\right) & =\frac{1}{\pi} \int_{0}^{\pi}\left[f\left(x_{n}+t\right)+f\left(x_{n}-t\right)\right] \frac{\sin n t}{t} d t+o(1) \\
& =\frac{1}{\pi}\left[\int_{0}^{\pi / n}+\int_{\pi / n}^{\pi 8^{8(\log n) \alpha} / n}+\int_{\pi \pi^{8}(\operatorname{cog} n) / \alpha / n}^{\pi}\right]+o(1) \\
& =\frac{1}{\pi}[I+J+K]+o(1),
\end{aligned}
$$

say, where β is the least number >1 such that $2 n \mid e^{\beta(\operatorname{cog} n)^{\alpha}}$, then it is sufficient to prove that $s_{n}\left(x_{n}\right)=o(1)$ as $n \rightarrow \infty$.

Since $f(x)$ is continuous, we have $I=o(1)$.

[^0]\[

$$
\begin{aligned}
J & =\sum_{k=1}^{e^{\beta(\log n)^{\alpha}}-1} \int_{k \pi / n}^{(k+1) \pi / n}\left[f\left(x_{n}+t\right)+f\left(x_{n}-t\right)\right] \frac{\sin n t}{t} d t \\
& =\int_{\pi / n}^{2 \pi / n} \sum_{k=0}^{p-2}\left[f\left(x_{n}+t+\frac{k \pi}{n}\right)+f\left(x_{n}-t-\frac{k \pi}{n}\right)\right] \frac{\sin n t}{t+\frac{k \pi}{n}} d t
\end{aligned}
$$
\]

where $\rho=e^{\beta(\log n)^{\alpha}}$. By the first mean value theorem, for $\pi / n \leqq \theta$ $\leqq 2 \pi / n$,

$$
\begin{aligned}
& J=-2 \sum_{k=0}^{\rho-2}(-1)^{k} \\
&=\frac{-2}{\pi} \sum_{k=0}^{(p-2) / 2} \frac{1}{n \theta+k_{\pi}} \frac{1}{2 k+1}\left[\left\{f\left(x_{n}+\frac{k \pi}{n}+\theta\right)+f\left(x_{n}-\frac{k \pi}{n}-\theta\right)\right]\right. \\
& \quad+\left\{f\left(x_{n}-\frac{2 k}{n} \pi+\theta\right)-f\left(x_{n}+\frac{2 k+1}{n} \pi+\theta\right)\right\} \\
&= o\left(\begin{array}{c}
1 \\
(\log n)^{x}
\end{array} \sum_{k=0}^{(p-2 / 2} \frac{1}{2 k+1}\right)=o\left(\begin{array}{c}
1 \\
(\log n)^{a}
\end{array} \log \rho\right)=o(1) .
\end{aligned}
$$

We next prove $K=o(1)$. Now

$$
K=2 \sum_{\nu=1}^{\infty} a_{\nu} \cos \nu x_{n} \int_{\pi e^{\beta(\log n) \alpha} / n}^{\pi} \cos \nu t \frac{\sin n t}{t} d t
$$

taking absolute value

$$
\begin{aligned}
|K| & \leqq 2 \sum_{\nu=1}^{\infty}\left|a_{\nu}\right| \left\lvert\, \int_{\pi e^{\beta(\log n)^{\alpha} / n}}^{\pi} \frac{\sin (n+\nu) t+\sin (n-\nu) t}{t} d t\right. \\
& =\sum_{\nu=1}^{\infty}\left|a_{\nu}\right| \frac{n}{\pi e^{\beta(\log n)^{\alpha}}}\left|\int_{\pi e^{\beta(\log n)^{\alpha} / n}}^{\xi}(\sin (n+\nu) t+\sin (n-\nu) t) d t\right| \\
& \left.\leqq 2 \sum_{\substack{\nu=1 \\
\nu \neq n}}^{\infty}\left|a_{\nu}\right| \frac{n}{\pi e^{\beta(\log n)^{\alpha}}} 1 n-\nu \right\rvert\,+o(1) .
\end{aligned}
$$

It is sufficient to prove that

$$
\frac{n}{e^{\beta(\log n)^{\alpha}}}\left[\sum_{\nu=1}^{n-1} \frac{\left|a_{\nu}\right|}{n-\nu}+\sum_{\nu=n+1}^{\infty} \frac{\left|a_{\nu}\right|}{\nu-n}\right]=\frac{n}{e^{\beta(\log n)^{\alpha}}}\left[K_{1}+K_{2}\right]=o(1) .
$$

Now

$$
\begin{aligned}
K_{1} & =\sum_{\nu=1}^{\operatorname{nn/2]}} \frac{\left|a_{\nu}\right|}{n-\nu}+\sum_{\nu=[n / 2]+1}^{n-1} \frac{\left(a_{\nu}\right)}{n-\nu}=O\left(\sum_{\nu=1}^{[n / 2]} e^{(\log \nu)^{\alpha}}+\sum_{\nu=[n-\nu)}^{n-1} \frac{e^{(\log \nu)^{\alpha}}}{\nu(n-\nu)}\right) \\
& =O\left(\frac{(\log n)^{1-\alpha}}{n} e^{(\log n)^{\alpha}}+\frac{\log n}{n} e^{(\log n) \alpha}\right), \\
K_{2} & =\left(\sum_{\nu=n+1}^{2 n}+\sum_{\nu=2 n+1}^{\infty}\right) \frac{\left|a_{\nu}\right|}{\nu-n}=O\left(\frac{e^{(\log n)^{\alpha}}}{n} \sum_{\nu=n+1}^{2 n} \frac{1}{\nu-n}+\sum_{\nu=2 n+1}^{\infty} \frac{e^{(\log \nu)^{\alpha}}}{\nu^{2} / 2}\right) \\
& =O\left(\frac{\log n}{n} e^{(\log n)^{\alpha}}+\frac{e^{(\log n)^{\alpha}}}{n}\right) .
\end{aligned}
$$

Accordingły we have

$$
K=O\left(\frac{n}{e^{8(\log n) \alpha}} \cdot \frac{\log n \cdot e^{\operatorname{(og} n)^{\alpha} \alpha}}{n}\right)=O\left(\frac{\log n}{e^{8(\log n)^{\alpha}-(\log n)^{\alpha} \alpha}}\right)=o(1) .
$$

Thus we have $s_{n}\left(x_{n}\right)=o(1)$ as $n \rightarrow \infty$.
3. Theorem 2. Let $\alpha>1$. If

$$
f(t)-f\left(t^{\prime}\right)=o\left(1 /\left(\log \log \frac{1}{\left|t-t^{\prime}\right|}\right)^{\alpha}\right) \quad\left(t, t^{\prime} \rightarrow 0\right)
$$

and the nth Fourier coefficients of $f(t)$ is of order $\left(e^{(\log \log n) d} / n\right)$, then the Fourier series of $f(t)$ converges uniformly at $t=0$.

Proof. As in the proof of Theorem 1, we may assume $x_{n} \rightarrow 0$ and $f(0)=0$.

$$
\begin{aligned}
s_{n}\left(x_{n}\right) & =\frac{1}{\pi}\left[\int_{0}^{\pi / n}+\int_{\pi / n}^{\left.\pi e^{(\beta \log \log n)^{\alpha} / n}+\int_{\pi e^{\beta}(\log \log n) \alpha / n}^{\pi}\right]+o(1)}\right. \\
& =\frac{1}{\pi}[I+J+K]+o(1),
\end{aligned}
$$

say, where β is the least number >1 such that $\mid e^{\beta(\log \log n)^{\alpha}}$ is odd. Then we have $I=o(1)$ and

$$
\begin{aligned}
J & =\sum_{k=1}^{e^{\beta(\log \log n) \alpha}-1} \int_{k \pi / n}^{(k+1) \pi / n}\left[f\left(x_{n}+t\right)+f\left(x_{n}-t\right)\right] \frac{\sin n t}{t} d t \\
& =\int_{\pi / n}^{2 \pi / n} \sum_{k=0}^{\xi-2}(-1)^{k}\left[f\left(x_{n}+\frac{k \pi}{n}+t\right)+f\left(x_{n}-\frac{k \pi}{n}-t\right)\right] \frac{\sin n t}{t+\frac{k \pi}{n}} d t,
\end{aligned}
$$

where $\xi=e^{\beta(\log \log n)^{\alpha}}$. Applying the first mean value theorem,

$$
\begin{aligned}
& J=-2 \sum_{k=0}^{\xi-2} \frac{(-1)^{k}}{n \theta+k \pi}\left[f\left(x_{n}+\frac{k \pi}{n}+\theta\right)+f\left(x_{n}-\frac{k \pi}{n}-\theta\right)\right] \\
&=-\frac{2}{\pi} \sum_{k=0}^{(\xi-2) / 2} \frac{1}{2 k+1}\left[\left\{f\left(x_{n}+\frac{2 k}{n} \pi+\theta\right)-f\left(x_{n}+\frac{2 k+1}{n} \pi+\theta\right)\right\}\right. \\
&\left.\quad+\left\{f\left(x_{n}-\frac{2 k}{n} \pi-\theta\right)-f\left(x_{n}-\frac{2 k+1}{n} \pi-\theta\right)\right\}\right]+o(1) \\
&=o\left(\frac{1}{(\log \log n)^{\alpha}} \sum_{k=0}^{(\xi-2) / 2} \frac{1}{2 k+1}\right)=o\left(\frac{1}{(\log \log n)^{\alpha}} \log \xi\right)=o(1) .
\end{aligned}
$$

We shall next prove that

$$
K=2 \sum_{\nu=1}^{\infty} a_{\nu} \cos \nu x_{n} \int_{\xi \pi / n}^{\pi} \cos \nu t \frac{\sin n t}{t} d t=o(1)
$$

Now

$$
\begin{aligned}
|K| & \leqq \sum_{\nu=1}^{\infty}\left|a_{\nu}\right|\left|\int_{\pi \xi / n}^{\pi} \frac{(\sin (n+\nu) t+\sin (n-\nu) t))}{t} d t\right| \\
& =\sum_{\nu=1}^{\infty}\left|a_{\nu}\right| \frac{n}{\pi \xi}\left|\int_{\pi \xi / u}^{\eta}(\sin (n+\nu) t+\sin (n-\nu) t) d t\right|
\end{aligned}
$$

$$
\begin{aligned}
& \leqq \frac{2}{\pi} \frac{n}{\xi}\left[\sum_{\nu=1}^{n-1} \frac{\left|a_{\nu}\right|}{n-\nu}+\sum_{\nu=n+1}^{\infty} \frac{\left|a_{\nu}\right|}{\nu-n}\right]+o(1) \\
& =\frac{2}{\pi} \frac{n}{\xi}\left[K_{1}+K_{2}\right]+o(1)
\end{aligned}
$$

say, then

$$
\begin{aligned}
& K_{1}=\left(\sum_{\nu=1}^{[n / 2]}+\sum_{\nu=[n / i /]+1}^{n-1}\right) \frac{\left|a_{\nu}\right|}{n-\nu}=O\left(\frac{(\log n)^{1-\alpha}}{n} e^{(\log \log n)^{a}}+\frac{\log n}{n} e^{(\log \log n)^{\alpha}}\right), \\
& K_{2}=\left(\sum_{\nu=n+1}^{2 n}+\sum_{\nu=2, n+1}^{\infty}\right) \frac{\left|a_{\nu}\right|}{\nu-n}=O\left(\frac{\log n}{n} e^{(\log \log n)^{\alpha}}+\frac{e^{(\log \log n)^{\alpha}}}{n}\right) .
\end{aligned}
$$

Accordingly we get

$$
K=O\left(\frac{n}{e^{\beta(\log \log n)^{\alpha}}} \cdot \frac{\log n \cdot e^{(\log \log n)^{\alpha}}}{n}\right)=o(1) .
$$

Thus the theorem is proved.
4. Theorem 3. If

$$
f(t)-f\left(t^{\prime}\right)=o\left(1 / \psi\left(\frac{1}{\left|t-t^{\prime}\right|}\right)\right) \quad\left(t, t^{\prime} \rightarrow 0\right)
$$

and if $f(x)$ is of class $\phi(n)^{2)}$ then the Fourier series of $f(t)$ uniformly at $t=0$, where $\phi(n)=O(n), \psi(n)=\log (n \theta(n) / \phi(n))$ and $\theta(n)$ are monotone increasing to infinity as $n \rightarrow \infty$.

Proof. As in the proof of previous theorems we assume $x_{n} \rightarrow 0$ and $f(0)=0$. We put

$$
\begin{aligned}
s_{n}\left(x_{n}\right) & =\frac{1}{\pi}\left[\int_{0}^{\pi / n}+\int_{\pi / n}^{\beta \theta(n) / \phi(n)}+\int_{\beta \theta(n) / \phi(n)}^{\pi}\right]+o(1) \\
& =\frac{1}{\pi}[I+J+K]+o(1),
\end{aligned}
$$

where β is a real number $\geqq 1$ such that $\beta n \theta(n) / \pi \phi(n)$ is an odd integer. Then we have $I=o(1)$, and

$$
\begin{aligned}
J & =\int_{\pi / n}^{2 \pi / n} \sum_{k=0}^{\{\beta n \theta(n) / \pi \phi(n)\}-2}\left[f\left(x_{n}+t+\frac{k \pi}{n}\right)+f\left(x_{n}-t-\frac{k \pi}{n}\right)\right] \frac{\sin n t}{t+\frac{k \pi}{n}} d t \\
& =-2 \sum_{k=0}^{\tau-2} \frac{(-1)^{k}}{2 k+n \theta}\left[f\left(x_{n}+\frac{k \pi}{n}+\theta\right)+f\left(x_{n}-\frac{k \pi}{n}-\theta\right)\right](\pi / n \leqq \theta \leqq 2 \pi / n) \\
& =o\left(\frac{1}{\psi(n)} \sum_{k=0}^{(\xi-2) / 2} \frac{1}{2 k+1}\right)=o(1),
\end{aligned}
$$

where $\zeta=\beta n \theta(n) / \pi \phi(n)$. We next prove $K=o(1)$. By the second mean value theorem
2) A function $f(x)$ is said to be of class $\phi(n)$ if

$$
\int_{a}^{b} f(x+t) \cos n t d t=O(1 / \phi(n))
$$

uniformly for all x, n, a, b with $b-a \leqq 2 \pi$. Cf. J. P. Nash: Rice Institute Pamphlet (1953); M. Satô: Proc. Japan Acad., 30 (1954).

$$
K=\frac{\phi(n)}{n \theta(n)} \int_{\beta \theta(n)) \phi(n)}^{\eta}\left[f\left(x_{n}+t\right)+f\left(x_{n}-t\right)\right] \sin n t d t
$$

where $\beta \theta(n) / \phi(n) \leqq \eta \leqq \pi$. Since $\int_{a}^{b} f(x+t) \sin n t d t=O(1 / \phi(n))$, we have

$$
K=O\left(\frac{\phi(n)}{\theta(n)} \cdot \frac{1}{\phi(n)}\right)=o(1) .
$$

This completes the proof of Theorem 3.
Corollary 1. Let $0<a<1$. If

$$
f(t)-f\left(t^{\prime}\right)=o\left(1 /\left(\log \log \frac{1}{\left|t-t^{\prime}\right|}\right)^{a}\right) \quad\left(t, t^{\prime} \rightarrow 0\right)
$$

and if $f(x)$ is of class $\phi(n)=n / e^{(\log \log n)^{\alpha}}$, then the Fourier series converges uniformly at $t=0$.

This follows from Theorem 3, putting

$$
\begin{gathered}
\psi\left(\frac{1}{\left|t-t^{\prime}\right|}\right)=\left(\log \log \frac{1}{\left|-t^{\prime}\right|}\right)^{\alpha}, \\
\phi(n)=n / e^{(\log \log n) \alpha}, \quad \theta(n)=e^{(\beta-1)(\log \log n) \alpha}(\beta>1) .
\end{gathered}
$$

Corollary 2. Let $\alpha>0$ and k be an integer $\geqq 3$. If ${ }^{3 \text { 3 }}$

$$
f(t)-f\left(t^{\prime}\right)=o\left(1 /\left(\log _{k} \frac{1}{\left|t-t^{\prime}\right|}\right)^{a}\right)
$$

and if $f(x)$ is of class $\phi(n)=n / e^{(\log n)^{\alpha}}$, then the Fourier series converges uniformly at $t=0$.

I wish to express my gratitude to Professor S. Izumi for his suggestions and encouragement.
3) $\log (\log x)=\log _{2} x, \quad \log _{k}(\log x)=\log _{k+1} \times(k \geqq 2)$.

[^0]: 1) S. Izumi and G. Sunouchi: Notes on Fourier analysis (XLVIII): Uniform convergence of Fourier series, Tôhoku Mathematical Journal, 3 (1951).
