168. On the Strong Summability of the Derived Fourier Series

By Masakichi Kinukawa
Mathematical Institute, Tokyo Metropolitan University, Japan
(Comm. by Z. Suetuna, m.J.a., Nov. 12, 1954)

1. Let $f(t)$ be a periodic function of bounded variation with period 2π, and its Fourier series be

$$
a_{0} / 2+\sum_{n=1}^{\infty}\left(a_{n} \cos n t+b_{n} \sin n t\right)=\sum_{n=0}^{\infty} A_{n}(t) .
$$

We shall consider the derived Fourier series

$$
\sum_{n=1}^{\infty} n\left(b_{n} \cos n t-a_{n} \sin n t\right)=\sum_{n=1}^{\infty} A_{n}^{\prime}(t)
$$

and its conjugate series

$$
\sum_{n=1}^{\infty} n\left(a_{n} \cos n t+b_{n} \sin n t\right)=\sum_{n=1}^{\infty} B_{n}^{\prime}(t) .
$$

We denote by $\tau_{n}(t)$ and $\bar{\tau}_{n}(t)$ the nth partial sums of them, i.e.

$$
\begin{aligned}
& \tau_{n}(t)=\sum_{m=1}^{n} m\left(b_{m} \cos m t-a_{m} \sin m t\right)=\sum_{m=1}^{n} A_{m}^{\prime}(t) \\
& \bar{\tau}_{n}(t)=\sum_{m=1}^{n} m\left(a_{m} \cos m t+b_{m} \sin m t\right)=\sum_{m=1}^{n} B_{m}^{\prime}(t)
\end{aligned}
$$

As in the case of Fourier series, we use the modified partial sums of them;

$$
\tau_{n}^{*}(t)=\tau_{n}(t)-A_{n}^{\prime}(t) / 2, \quad \bar{\tau}_{n}^{*}(t)={ }_{n} \bar{\tau}(t)-B_{n}^{\prime}(t) / 2 .
$$

Recently B. N. Prasad and U.N. Singh ${ }^{1)}$ proved the following theorems:

Theorem A. If $f(t)$ is a continuous function of bounded variation which is differentiable at $t=x$ and if for some $\varepsilon>0$

$$
G(t)=\int_{0}^{t}|d g(u)|=o\left\{t\left(\log \frac{1}{t}\right)^{-1-t}\right\} \text {, as } t \rightarrow 0,
$$

where $g(u)=g_{x}(u)=f(x+u)-f(x-u)-2 u f^{\prime}(x)$, then

$$
\sum_{m=1}^{n}\left|\tau_{m}(x)-f^{\prime}(x)\right|=o(n) .
$$

That is, the derived Fourier series of $f(t)$ is $(H, 1)$ summable to the sum $f^{\prime}(x)$ at $t=x$.

Theorem B. If $f(t)$ is a continuous function of bounded variation which is differentiable at $t=x$ and if for some $\varepsilon>0$

1) B. N. Prasad and U. N. Singh: Math. Zeits., 56, 280-288 (1952).

$$
H(t)=\int_{0}^{t}|d h(u)|=o\left\{t\left(\log \frac{1}{t}\right)^{-1-\varepsilon}\right\}, \text { as } t \rightarrow 0
$$

where $h(u)=h_{x}(u)=f(x+u)+f(x-u)-2 f(x)$, then

$$
\sum_{m=1}^{n}\left|\bar{\tau}_{m}(x)-H_{m}(x)\right|=o(n)
$$

where $H_{n}(x)=-\frac{1}{4 \pi} \int_{1 / n}^{\pi} h_{x}(t) \operatorname{cosec}^{2} \frac{t}{2} d t$.
In this paper we shall prove the following (H, k) summability theorems.

Theorem 1. Under the assumption of Theorem $A,{ }^{2)}$ we have

$$
\sum_{m=1}^{n}\left|\tau_{m}^{*}(x)-f^{\prime}(x)\right|^{k}=o(n), \text { as } n \rightarrow \infty,
$$

for any $k>0$.
Theorem 2. Under the assumption of Theorem B, we have

$$
\sum_{m=1}^{n}\left|\bar{\tau}_{m}^{*}(x)-H_{m}(x)\right|^{k}=o(n), \text { as } n \rightarrow \infty,
$$

for any $k>0$.
2. Proof of Theorem 1. ${ }^{3)}$ We have
$\tau_{n}^{*}(x)=\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left\{\frac{d}{d x}\left(\frac{\sin n(x-u)}{\tan (x-u) / 2}\right)\right\} f(u) d u$
$=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x-t)\left(\frac{d}{d t} \frac{\sin n t}{\tan t / 2}\right) d t=-\frac{1}{\pi} \int_{0}^{\pi}\{f(x+t)-f(x-t)\}\left(\frac{d}{d t} D_{n}^{*}(t)\right) d t$,
where $D_{n}^{*}(t)=\frac{\sin n t}{2 \tan t / 2}$. Integrating by parts, we get

$$
\tau_{n}^{*}(x)=\frac{1}{\pi} \int_{0}^{\pi} D_{n}^{*}(t) d\{f(x+t)-f(x-t)\}=\frac{1}{\pi} \int_{0}^{\pi} D_{n}^{*}(t) d g(t)+f^{\prime}(x) .
$$

Thus we obtain

$$
\tau_{n}^{*}(x)-f^{\prime}(x)=\frac{1}{\pi} \int_{0}^{\pi} D_{n}^{*}(t) d g(t)=P_{n}
$$

say.
Hence, it is sufficient to show that

$$
S_{n}^{k}=\sum_{m=1}^{n}\left|P_{m}\right|^{k}=o(n) .
$$

For this purpose we set $c_{m}=\left|P_{m}\right|^{k-1} \operatorname{sgn} P_{m}, \quad \Lambda_{n}(t)=\sum_{m=1}^{n} c_{m} \sin m t$ and $\Gamma_{n}=\sum_{m=1}^{n}\left|c_{m}\right|$. Then $\left|\Lambda_{n}(t)\right| \leqq \Gamma_{n}$ and $\left|\Lambda_{n}(t)\right| \leqq n t \Gamma_{n}$. Using these formulas, we have

[^0]\[

$$
\begin{aligned}
2 \pi S_{n}^{k}=2 \pi & \sum_{m=1}^{n}\left|P_{m}\right|^{k-1} P_{m} \operatorname{sgn} P_{m}=2 \pi \sum_{m=1}^{n} c_{m} P_{m} \\
& =\sum_{m=1}^{n} c_{m} \int_{0}^{\pi} \cot \frac{t}{2} \sin m t d g(t)=\int_{0}^{\pi} \Lambda_{n}(t) \cot \frac{t}{2} d g(t) \\
& =\int_{0}^{1 / n}+\int_{\mathrm{i} / n}^{\pi}=I_{1}+I_{2},
\end{aligned}
$$
\]

say, where

$$
\left|I_{1}\right| \leqq n \Gamma_{n} \int_{0}^{1 / n}|d g(t)|=o\left(\Gamma_{n}\right)
$$

and

$$
\begin{aligned}
\left|I_{2}\right| & \leqq \Gamma_{n} \int_{1 / n}^{\pi} \cot \frac{t}{2}|d g(t)| \\
& \leqq \Gamma_{n}\left\{\left[\cot \frac{t}{2} G(t)\right]_{1 / n}^{\pi}+\frac{1}{2} \int_{1 / n}^{\pi} \operatorname{cosec}^{2} \frac{t}{2} G(t) d t\right\} \\
& =o\left(\Gamma_{n}\right)+o\left(\Gamma_{n} \int_{1 / n}^{\pi} \operatorname{cosec}^{2} \frac{t}{2} \frac{t d t}{(\log 1 / t)^{1+\varepsilon}}\right) \\
& =o\left(\Gamma_{n}\right)+o\left(\Gamma_{n} \int_{1 / n}^{\pi} \frac{d t}{t(\log 1 / t)^{1+\varepsilon}}\right)=o\left(\Gamma_{n}\right) .
\end{aligned}
$$

Thus we get $S_{n}^{k}=o\left(\Gamma_{n}\right)$. However, by Hölder's inequality, we can see, ${ }^{4)}$

$$
\Gamma_{n} \leqq\left(\sum_{m=1}^{n}\left|P_{m}\right|^{k}\right)^{1 / k^{\prime}} n^{1 / k}=S_{n}^{k / k} k^{\prime} n^{1 / k} \quad\left(1 / k+1 / k^{\prime}=1\right)
$$

Hence we have $S_{n}^{\ell}=o\left(S_{n}^{k / / s^{\prime}} n^{1 / k}\right)$, that is, $S_{n}^{k}=o(n)$.
3. Proof of Theorem 2. As usual we put

$$
\begin{aligned}
\bar{D}_{n}^{*}(t) & =\frac{1-\cos n t}{2 \tan t / 2}, \text { then } \\
\bar{\tau}_{n}^{*}(x) & =-\frac{1}{\pi} \int_{-\pi}^{\pi} f(u)\left(\begin{array}{c}
d \\
d x \\
\bar{D}_{n}^{*}(u-x)
\end{array}\right) d u \\
& =-\frac{1}{\pi} \int_{0}^{\pi}\left(\frac{d}{d t} \bar{D}_{n}^{*}(t)\right)\{f(x+t)+f(x-t)\} d t \\
& =-\frac{1}{\pi} \int_{0}^{\pi} \bar{D}_{n}^{*}(t) d h(t)=-\frac{1}{\pi}\left(\int_{0}^{1 / n}+\int_{1 / n}^{\pi}\right)=J_{1}+J_{2}
\end{aligned}
$$

say, where

$$
\left|J_{1}\right| \leqq O\left(\int_{0}^{1 / n} \frac{1}{t}(n t)|d h(t)|\right)=O\left(n \int_{0}^{1 / n}|d h(t)|\right)=o(1)
$$

4) We may suppose $k>1$.
and

$$
\begin{aligned}
J_{2}= & -\frac{1}{2 \pi} \int_{1 / n}^{\pi} \cot \frac{t}{2} d h(t)+\frac{1}{2 \pi} \int_{1 / n}^{\pi} \cot \frac{t}{2} \cos n t d h(t) \\
= & -\frac{1}{2 \pi}\left[\cot \frac{t}{2} h(t)\right]_{1 / n}^{\pi}-\frac{1}{2 \pi} \int_{1 / n}^{\pi} \frac{1}{2} \operatorname{cosec}^{2} \frac{t}{2} h(t) d t \\
& +\frac{1}{2 \pi} \int_{1 / n}^{\pi} \cot \frac{t}{2} \cos n t d h(t) \\
= & -\frac{1}{2 \pi} \cot \frac{1}{2 n} h\left(\frac{1}{n}\right)+H_{n}+T_{n}=o(1)+H_{n}+T_{n}
\end{aligned}
$$

Thus we get

$$
\bar{\tau}_{n}^{*}-H_{n}=T_{n}+o(1) .
$$

Hence, it suffices to show that

$$
\overline{S_{u}^{k}}=\sum_{m=1}^{n}\left|T_{m}\right|^{k}=o(n)
$$

Similarly as in the proof of Theorem 1, we put $\bar{c}_{m}=\left|T_{m}\right|^{k-1} \operatorname{sgn} T_{m}$, $\bar{\Lambda}_{n}(t)=\sum_{m=1}^{n} \bar{c}_{m} \cos m t$ and $\bar{\Gamma}_{n}=\sum_{m=1}^{n}\left|\bar{c}_{m}\right|$. Then we have

$$
\begin{aligned}
\bar{S}_{n}^{k} & =\int_{1 / n}^{\pi} \bar{A}_{n}(t) \cot \frac{t}{2} d h(t) \leqq \bar{\Gamma}_{n} \int_{1 / n}^{\pi} \cot \frac{t}{2}|d h(t)| \\
& =o\left(\bar{\Gamma}_{n}\right)+o\left(\bar{\Gamma}_{n} \int_{1 / n}^{\pi} \frac{d t}{t(\log 1 / t)^{1+\varepsilon}}\right)=o\left(\bar{\Gamma}_{n}\right)=o\left(\bar{S}_{n}^{k / k^{\prime}} n^{1 / k}\right)
\end{aligned}
$$

Thus we get $\overline{S_{n}^{k}}=o(n)$, which is required.
4. Finally we shall state the following, which may be similarly proved as Theorems 1 and 2.

Theorem 3. Under the assumption of Theorem A, we have

$$
\sum_{m=1}^{n}\left|\tau_{m}(x)-f^{\prime}(x)\right|^{k}=O(n), \text { for any } k>0
$$

Theorem 4. Under the assumption of Theorem B, we have

$$
\sum_{m=1}^{n}\left|\bar{\tau}_{m}(x)-H_{m}(x)\right|^{x}=O(n), \text { for any } k>0
$$

[^0]: 2) In our theorems, the continuity of the function $f(t)$ in the whole interval is not necessary.
 3) $C f$. G. H. Hardy and J. E. Littlewood: Proc. London Math. Soc., 26, 273-286 (1926-27).
