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7. Harmonic Measures and Capacity of Sets of the
Ideal Boundary. II

By Zenjiro KURAMOCHI
Mathematical Institute, Osaka University
(Comm. by K. KuNuGI, M.J.A., Jan. 12, 1955)

Let R be a positive boundary Riemann surface and let D be a
non compact domain determining a subset B, of the ideal boundary.
Put D,=(R—R,)N\D. Let U,,.(2) be a harmonic funetion in R,,,—

R,— D, such that U, ,,.(2)=0, on 8R,, U, ».(z)=1 on 2D, and ?%»»w:o
on o9R,,,—D,. Then limlim U,, n,,i(z)-_llm U, (2)=U(z), where U(z)

N=00 T=00

is the equilibrium potential of Bjp. We have proved that
U, oU,
‘nds = ® ds 1
o f (1)

for every G. except for at most one e where G, is the domain in
which U,(z)>1—e¢. Let U’,,.(?) be a harmonic function in
R,.,—G.—R, such that U’,,.(?)=0 on OR, U,,.()=1—¢ on

4
9G, N R,., and %@W‘:o on ORy.i—G.. Then lim Uy ,.(2)=U.().
" i=c0

!
Since every U/n ai(®)=1—¢ on OG, ZU montl U aU”"""’i =<0 on

on  on
U,
every point of °9G.N\R,... Hence by (1) and lim / ds=
ou, fme
J an we easily that . .
Hm fo g, A = ) o, (2)

9Ge €

on oG, for every bounded sequence of continuous functions ¢,—>¢ :
|§0t|§M < oo,

We denote by G, the domain in which U,(2)>1—¢,, where
€,>¢,>+--; lim ¢,=0 and every ¢, satisfies the condition (1).

Let U", ..:(2) be a harmonic function in R,.;—R,—G, such that

14
U ei@)=U(z) on 9G.+9R, and %@W —0 on ORy,;—G,. Since Us(2)
n

is the function such that U,(2)=1-—¢, and U,(2) has the minimum
Dirichlet integral over R— R,—@,, and since lim U,(2)=U(2) on 9G,,
then by (2) we can prove as in the previous paper®

lim lim U}/ ,..,(2)=U ().

n=00 %=co

I 1) See, the definition of non compact domain. ¢ Harmonic measures and capacity.
"2) See (1).
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Hence we have the following
Lemma.
URR)=U.,[2),
where the extremisation is with respect to the sequence {G,}.
Now we apply Green’s formula to U, ,..(2) and U”,.; (2). Then

f v, n+z(z)8U" "ids = f Ul ii(@) 2Unnsigs  and
on

aRO+(aa”an+i)+(aRn+z—Gn) B8Ry (G N\ Ryy 4 ) +(ORy, 4 ;= Gy

/
(1 sn)f aUn n+zds fUn i (Z) _g_f;] nymt+i dS.

ORy, 3GpN Ry 44
Let ¢—>c. Then by (1) and (2) we have
(1— en)fw ds—fU( )_J_ ds. (3)
On the other hand, since lim f ou, ds=Cap (Bp)= f oU ds and
n=co 52, an
(1—e) Qgﬁds_ f Ua(2) 20 aUn ds, we have by (3)
azao
aU oU, oU
llm U(2)— U(z)) * ds= hm 1—¢,) ds= (4)
) J &)
Since lim D (Un'nﬂ(z))'— D (Un(z)) and hm D (Uy’/nﬂ(Z)% D (Uz)),
i=c0 By, ;~Ry-Gp =0 B4~ Ry—tg B-Rg-Gn
we have

R_—Q(_g'ﬂ(z)'— U(z)’ n(Z))——— hm D (U,n n+l(z) n, 'n,+a(z>) Un 'n-)-t(z))

t=moo Rn+¢"RO"

f (U (2)—U()) -~1‘ ds.

Hence by (4) hm l_)R(_nU @—-U(), n(z)):O. Thus
D (U&= U@)=D, (U@)~DU,(z), whence
lim D (U@) = lim D (U,(2)). (5)
Since D (U.@)=D), W) ~D, (U,:E;))—en f U s,
lim D (Un(z))::O. " (6)

n=co Gp—Dpg

From the Fatou’s Lemma, we have
D (U (z)):D (lim Un(z))<lim (D (U (?))=Cap (Bp).
Therefore by (5) and 6), we have hm D (U(z))=0. Hence

lim D (U.) = lim D (U@), lim DW'FUPZ;))_ lm D (U¢)=0
and

lim D (Un(z) U(z), Un(2))=0.

n=o00 Gp—D

Therefore
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lim 12 (U,,(z) U(z))_hm (D (Un(z) U(z))+D (Un(z)—U(z)) 0.

It follows that U,(2) converges to U(z) in norm. Then we have the
following

Proposition. Cap (By)= f U js— D (UG).

9Rp

The extremisation is defined with respect to the sequence {G,},
we can also the above operation with respect to {D,}.

Every U,@@)(m=n, n+1,...) (U)=1lim U,(?)) is the harmonic
function which has the minimum Dirichlet integral over R—R,—D,
among all functions which have their boundary value U,(z) on 9D,.
Let A(z) be a harmonic function in R—R,— D, such that %4(2)=0 on
oD, +9oR, and D(h(z))<M< . Then

D (Un(2) t—s ;:(z))éD (Un(2)) =2 D (Un(2), M)+ D (h(2)),
whence

D (h(a), Un@)=0.

Let U,(z) be a harmonic function in R— R,— D, such that U (2)=U(z)

on 9D,+0R, and U,2) has the minimum Dirichlet integral over
R —Ro"Dn.

Then D (_Ij’n(z))gD (U(2)) and D (ﬁ'n(z), h(2))=0.
Since 11m Un(z) U(z) on 2D, and hm é)(g]n(z) U(z))=0,

we can assume A(2)=U,(2)—U(z). Then we have
lim [D (_U(z) U.(2), h(z))]2 < hm [D (k(z)) D (U(z) U,.(2))]1=0.

m=c0 R-—-Rgy

Hence RD (l£ (2), h(z))=0, therefore

OZQREQ)E?)"TI”@’ k(@) =D ]gglgi)—(?n(z)), whence U(2)=U,(2).
Thus we have the next
Theorem 4.
UR)=U..(2),
where the extremisation is defined with respect to the sequence {D,}.
Corollary 1. If U(z)=*0, ]Trfl U(z)=1.

Proof. Let Un ns(2) be a harmomc function in R,,;,—RE,— D, such
that U, 2:@)=U({®) on oD, R,.,, Mﬂ(z) 0 on oR, and — aU” M=

on 8Rn+z D,. Then Un(z)——hm U,, n41(R). Assume U(z)<K<1 on D.
Then Un 2wiR)<KU, W(z) Hence

U(z)=lim lim U,ni(®)<K lim llm Unnei()=KU(2).

n=00 f= n=c0 i=
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This is absurd. Hence Hif)l U(z)=1.

Corollary 2. If U(z)=0, then Tim U(z)=1 in B, except possibly
for a subset of B, of outer capacity zero.

We denote by J,(A<1l) the domain where U(z)<i. Put
DN J,=H, Then H, is a non compact domain determining a subset
I, of B,. Let U,2) be the equilibrium potential of I,. Then it is
clear that U,()<U (). Hence l—ﬁfitf U,(2)<4. Therefore by the above
corollary U,(2)=0. =

On the Behaviour of the Green’s Function in the Neighbourhood
of the Ideal Boundary

Let G(z,2,) be the Green’s function of B and let M be suf-
ficiently large number. Then G,=&{G(z,2)>M} is compact. We

can suppose R,=G,. If we consider B— R, as a non compact domain
D defining all ideal boundary of R. Then it is clear that

_ G %) — —w
1- =0 =U@=u@),

where U(z) and '(2) is the equilibrium potential and harmonic
measure. Then by the corollary U(z)=1 except possibly a subset
of ideal boundary of ecapacity zero. Let D,=&{U(2)>2} be a non
compact domain determining B,. Let U,(2), o»(?) and ,(z) be
equilibrium potential of B, and harmonic measures. Then
0=U,(?)=0':(?) and w,(2)=0 is equivalent to »(2)=0. Thus we have
the next

Theorem 5. Cap (Bp)=0=w,(?).

We can construct an open Riemann surface DA,\ by the process
of symmetrization with respect to @D,. Then we have the following

Corollary. DA+2)A 18 a null-boundary Riemann surface.
Proof. Let w,(2) be the harmonic measure of (3R, D)+ (@R. N\ D,)

with respect to ((Dy()Ru.)—Ry)+((Dy\R)—R,). Then wa2)=0 on
OR,+oR,, w(2)=1 on (OR,ND,) and -aain”:O on 9D,. On the other
hand let U, ..:(2) be a function in (D, N R.)— R, such that U, ,..(2)=0
on 3Ry, Unwui(2)=1 on 3D, (R—R,) and %g”’w —0 on ORu.—D.
Then it is clear that D (w,(2)) < D IgU”»"+‘(z))' Hence, since B, is

. (PANRyI—Ry Byp+i—Ey
a set of capamty Zzero, we have

D (lim w,()=<D (lim lim U, ».4(2))=0.

DANR-R, R-R,
Thus DA+D; is a null-boundary Riemann surface.
Corollary. Let G(z, z,) be the Green’s function of R and let h(z)
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be its conjugate. Put W(R)=e o~ "=y,  We cut R along the
trajectories (h(2)=const) so that W (2) may be single valued. Then R
s mapped onto the domatn |W ()| <1 with enumerably infinite number
of radial slits. Then z=z"Y(W) can be continued analytically along
radit re®® from W=0 to |W|=1 except possibly a set of 6 of angular
measure zero.

In faet, if it were not so, there exists a set I, of the ideal
boundary such that I, is defined by a non compact domain D,=¢

{G(z, 2)>2} and the length of the image of C enclosing I, is larger
than [ (>0). Since Cap ([,)=0, there exists a harmonic function

Udz) in R—(R,(\Dy)—E, such that 2U@ ds=2r and Ul(z)=M,
(lim M,= ) on oR,N\D, where Cup= 8 U, 2)=pn}. Thus by usual

=00

method we can deduce a contradiction. Analogously we have

Corollary. If the analytic function f(2) satisfies Dyp(f(2))< .
Then the length of the image of trajectories mapped by f(2) is finite
Sor almost 6.

Applications to the Subregion on an Abstract Riemann Surface

Let D be a non compact domain in B. If any bounded (Dirichlet
Bounded) harmonic function vanishing on 9D or having vanishing
normal derivative on 9D must reduce to a constant, we denote by
Sozy Sops Sove and Syyp such class of D respectively. In the previous
paper,” we have proved that, if D can be mapped onto a bounded
domain then, Sy, Sz.

Theorem 6. If the genus of D is finite, then D e Syyp=Soyp S
equivalent to that D+D isa null-boundary Riemann surface.

Proof. If D+D is a null-boundary Riemann surface, it is clear
that D € Syyz (Sown). By assumption, we can suppose D—R, isa planer

surface. Assume D+D is a positive boundary Riemann surface.
Then the harmonic measure «(z) of the ideal boundary of (D—R, )+

(D—R,) is non-constant. Normalize w(2) so that f 90'(%) _9, and

let A(z) be its conjugate. Then ¢+ = 1y (z) maps D R,, onto
the domain 1<|W|<K with enumerably infinite number of radial
slits which are the images of 9D such that OR,, is mapped onto

|Wl=1 and (D— Rno) is symmetric to (D— R, ) with respect to these
slits.

Let D, (A<K) be the domain in which W(z)<4. Then D, deter-
mines a set of ideal boundary of capacity zero. Thus we can easily

3) Z. Kuramochi: On covering surfaces, Osaka Math. Jour. (1953).
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4 !
prove that f Ow ds = f % ds, whence the length of the image of
iy on 5, on
oD, =2-272. Let G be a non compact domain of (D—Rn0)+(D—Rn03
lying over 1<|W|<K and O<arg W<=. Let U,z) be a harmonic
function in (D— R, —(G N D,)) (D—R,y—(GN D,)) such that U,(z)=0
on oR, + SR;O, U z)=1 on oD,NG and has the minimum integral.
On the other hand let U’,(2) be a harmonic function in the ring
1<|W|<2 with radial slits above-mentioned such that U’,(W)=1 on
|W|=2, 0<arg W< and U’,(W) has the minimum Dirichlet integral.
Then
2 P
~Rp, 1W< - laé'_/l
Therefore by theorem
D (lim U,())=Cap (B,) = 2™ _>0. Hence lim T,(z)=1.
logK €6

n

D (U@) = 2D [UWW) =

On the other hand, let V,(W) be a harmonic function on the ring
without radial slits such that V,(W)=1 on |W|=2, O<arg W<m=
and V(W) has the minimum Dirichlet integral. Then clearly
D(UR) = 2D (lim V(W)<2D (o@)= 4" .
n logK

Therefore on D+]3, there exists a non-constant bounded and Dirichlet
bounded harmonic function, because, if it were not so U(z) must be
a multiple of w(2).

4) Z. Kuramochi: On the behaviour of analytic functions on abstract Riemann
surfaces to appear in Ann. Sci. Acad. Fenn.



