14. On a Characteristic Property of Completely Normal Spaces

By Takeshi INOKUMA

Gunma University

(Comm. by K. KUNUGI, M.J.A., Feb. 18, 1955)

Let H be a topological space. We shall consider the following condition:

(V) For any two subsets X_1 and X_2 of H, there exist two closed sets H_1 and H_2 such that

- $(3) \qquad \qquad \overline{X_i} \subset H_i, \qquad i=1, 2.$

Here the bar means the closure operation.

As is well known, the metrizability of H implies (V) and (V) implies the normality of H. However it seems that a closer relation between (V) and the separation axioms has not been given in the literature.¹⁾

The object of this note is to show that a topological space H is completely normal if and only if it satisfies the condition (V).

1. First we shall prove

Lemma 1. The conditions (1), (2), and (3) imply (1), (3), and (2') below:

(2') $H_i \frown (\overline{X}_1 \smile \overline{X}_2) \subset \overline{X}_i, \quad i=1, 2,$

and conversely.

Proof. It is obvious that (1), (2'), and (3) imply (2); we have only to prove that (1), (2), and (3) imply (2'). Since $H_1 \cap H_2 \cap$ $(\overline{X}_1 \cup \overline{X}_2) \cap \overline{X}_2 = \overline{X}_1 \cap \overline{X}_2 \cap \overline{X}_2$ by (2), we have $H_1 \cap \overline{X}_2 = \overline{X}_1 \cap \overline{X}_2$ by (3). Therefore $(H_1 \cap \overline{X}_2) \cup \overline{X}_1 = (\overline{X}_1 \cap \overline{X}_2) \cup \overline{X}_1$, and hence $H_1 \cap (\overline{X}_1 \cup \overline{X}_2) \subset \overline{X}_1$. Similarly we have $H_2 \cap (\overline{X}_1 \cup \overline{X}_2) \subset \overline{X}_2$.

Next we shall recall the definition of completely normal spaces; a topological space H is said to be completely normal if the following condition is satisfied:

For any two subsets Y_1 and Y_2 of H such that

$$(4) \qquad \qquad \overline{Y}_1 \cap Y_2 = Y_1 \cap \overline{Y}_2 = 0,$$

¹⁾ Cf. A. D. Wallace: Dimensional types, Bull. Amer. Math. Soc., **51**, 679–681 (1945). Indeed, he said in his paper "the validity of (V) is a well-known property of metric spaces but we have no reference to its formulation in the literature as an axiom".

there exist two open sets K_1 and K_2 of H with the following properties:

- (5)
- $K_1 \frown K_2 = 0 \ Y_i \subset K_i, \quad i=1, 2.$ (6)

Now we shall prove

Theorem 1. A necessary and sufficient condition that a topological space H be completely normal is that H satisfy the condition (V).

Proof. Sufficiency. Assume that (V) is satisfied. Let Y_1 and Y_2 be any two subsets of H satisfying (4). Then we can find two closed sets H_1 and H_2 which satisfy (1), (2), and (3) with X_1 and X_2 replaced by Y_1 and Y_2 . Let us set $K_1 = H - H_2$ and $K_2 = H - H_1$. Then K_i are open and the validity of (5) is obvious from (1). Next we shall show that (6) holds. Suppose that there exists a point xwhich is contained in Y_1 but not in K_1 . Then x is contained in H_2 . Since $x \in Y_1 \subset H_1$ by (3), we have $x \in H_1 \cap H_2 \cap (\overline{Y}_1 \smile \overline{Y}_2) = \overline{Y}_1 \cap \overline{Y}_2$. Thus $x \in Y_1 \cap Y_2$, this contradicts to (4). Hence we have $Y_i \subset K_i$, i=1, 2. Therefore H is completely normal.

Necessity. Let X_1 and X_2 be any two subsets of H. We put $Y_1 = \overline{X}_2 - \overline{X}_1$ and $Y_2 = \overline{X}_1 - \overline{X}_2$. Then $\overline{Y}_1 \subset \overline{X}_2$ and $\overline{Y}_2 \subset \overline{X}_1$, and hence $\overline{Y}_i \cap Y_j \subset \overline{X}_j \cap (\overline{X}_i - \overline{X}_j) = 0$, i, j = 1, 2. Thus (4) is fulfilled. Assume that H is completely normal. Then we can find two open sets K_1 and K_2 satisfying (5) and (6). Let us put

 $K'_{i} = K_{i} \cap (H - X_{i}), \quad H_{i} = H - K'_{i},$ i=1, 2.(7)

It is obvious that H_1 and H_2 are closed and satisfy (1) and (3). We shall show that (2') holds also. Since $Y_1 = \overline{X}_2 - \overline{X}_1 \subset K_1$, we have $H-K_1 \subset (H-\overline{X}_2) \subset \overline{X}_1$, and hence $H_1 = H-K_1' = (H-K_1) \subset \overline{X}_1 \subset (H-\overline{X}_2) \subset \overline{X}_1$ Therefore $H_1 \subset (\overline{X}_1 \subset \overline{X}_2) \subset ((H - \overline{X}_2) \subset \overline{X}_1) \subset (\overline{X}_1 \subset \overline{X}_2) = \overline{X}_1.$ by (7). Similarly we obtain $H_2 \frown (\overline{X_1} \smile \overline{X_2}) \subset \overline{X_2}$. This shows that if H is completely normal, then H satisfies the condition (V).

Thus Theorem 1 is completely proved.

2. We can extend Theorem 1 as follows:

Theorem 2. If a topological space H is completely normal, then for any n subsets X_1, X_2, \ldots, X_n of H, there exist n closed sets H_1 , H_2, \ldots, H_n such that

 $H = H_1 \smile H_2 \smile \ldots \smile H_n$ (1_n)

 $H_i \cap H_j \cap (\overline{X}_i \cup \overline{X}_j) = \overline{X}_i \cap \overline{X}_j$ (2_{n})

 $\overline{X}_i \subset H_i, \quad i=1, 2, \ldots, n.$ (3_{n})

Proof. We shall prove our theorem by induction on n. In case n=2, Theorem 2 is true by Theorem 1. Assume that Theorem 2 holds for n. Let $X_1, X_2, \ldots, X_{n+1}$ be n+1 subsets of H. Then we T. INOKUMA

[Vol. 31,

can find *n* closed sets $H_1, H_2, \ldots, H_{n-1}$, and H' satisfying the conditions of Theorem 2 for *n* given sets $X_1, X_2, \ldots, X_{n-1}$ and $X' = X_n \, X_{n+1}$. Since H' is completely normal, by Theorem 1 we can select two closed subsets H_n and H_{n+1} of H' which satisfy (V) for the two given subsets X_n and X_{n+1} of H'. We shall show that these $H_1, H_2, \ldots, H_{n+1}$ fulfill the conditions of Theorem 2 for $X_1, X_2, \ldots, X_{n+1}$. The conditions (1_n) and (3_n) hold trivially. To prove the equality $H_i \cap H_n \cap (\overline{X_i} \cup \overline{X_n}) = \overline{X_i} \cap \overline{X_n}$ for i < n, let $x \in H_i \cap H_n \cap (\overline{X_i} \cup \overline{X_n})$. Then we have $x \in H_i \cap H' \cap (\overline{X_i} \cup \overline{X_{n+1}}) = \overline{X_i} \cap \overline{X_n} - \overline{X_{n+1}}$. By Lemma 1 we obtain $x \in H_n \cap (\overline{X_i} \cup \overline{X_n}) \subset \overline{X_i} \cap \overline{X_n}$. Since it is obvious that $H_i \cap H_n \cap (\overline{X_i} \cup \overline{X_n}) \cap \overline{X_i} \cap \overline{X_n}$, we have $H_i \cap H_n \cap (\overline{X_i} \cup \overline{X_n}) = \overline{X_i} \cap \overline{X_n}$. Since the above argument holds equally for H_{n+1} , the proof is completed.

3. In Theorem 2 the number n is, of course, assumed to be finite. For an infinite number of sets X_1, X_2, \ldots , a similar proposition does not hold in general, as is shown by the following example.

Let H be Euclidian space of dimension 1, and X_1, X_2, \ldots be an infinite family of all the subsets X_i of H such that X_i consists of only one rational point. Then there is no family of closed sets H_1, H_2, \ldots of H with the following property:

$$(\mathbb{V}^*) \qquad \begin{cases} H = H_1 \smile H_2 \smile \dots \\ H_i \frown H_j \frown (\overline{X_i} \smile \overline{X_j}) = \overline{X_i} \frown \overline{X_j} \\ \overline{X_i} \subset H_i, \qquad i = 1, 2, \dots \end{cases}$$

In this case H is, of course, a completely normal topological space.

Proof. Suppose that there is a desired family $\{H_1, H_2, \ldots\}$. Since $H_i \cap (\overline{X}_i \smile \overline{X}_j) \subset \overline{X}_i$, the number of rational points contained in H_i is one. The set R_0 of all irrational points is equal to $\supset \{H_i - X_i\} = \bigcirc \{H_i \cap (H - X_i)\}$ and hence R_0 is an F_{σ} -set, for H is closed and $H - X_i$ is open. Since R_0 is a G_{δ} -set, it is F_{σ} and G_{δ} at the same time, that is, R_0 is a developable set in the sense of C. Kuratowski. On the other hand R_0 is a frontier set (ensemble frontier, i.e. $\overline{H - R_0} = H$) and hence R_0 is non dense (i.e. $\overline{H - R_0} = H$). This is a contradiction.

4. We have just obtained the consequence that even in Euclidian space of dimension 1, the property (V^*) does not hold in general. So we are led to the consideration of the case where $\{X_1, X_2, \ldots\}$ is locally finite.

Theorem 3. If a topological space H is completely normal and fully normal, then for any locally finite family of subsets X_1, X_2, \ldots of H, there exists a family of closed sets H_1, H_2, \ldots with the property (V^*) .

No. 2] On a Characteristic Property of Completely Normal Spaces

Proof. Since the family $\{X_{\alpha}\}$ is locally finite, the family $\{\overline{X}_{\alpha}\}$ is also locally finite. So we assume X_{α} to be closed and shall prove this theorem for the family of closed sets $\{X_{\alpha}\}$. For any point xof H, there exists a neighbourhood U of x which intersects only a finite number of the sets of $\{X_{\alpha}\}$. There corresponds a neighbourhood V of x such that $U \supset \overline{V} \supset V$, for H is regular. Thus we obtain an open covering $\{V\}$ such that the closure of any open set of $\{V\}$ intersects only a finite number of sets of $\{X_{\alpha}\}$. Since H is fully normal, we can find a locally finite open covering $\{W_{\beta}\}$ which is a refinement of $\{V\}$. Then $\{\overline{W}_{\beta}\}$ is a locally finite closed covering which is a refinement of $\{\overline{V}\}$. For each β , let $\{X_i; i \in \Gamma_{(\beta)}\}$ be the family of the sets X_i intersecting \overline{W}_{β} (here $\Gamma_{(\beta)}$ is finite). For $\{X_i \supset \overline{W}_{\beta}; i \in \Gamma_{(\beta)}\}$ we can obtain $\{H_{i\beta}; i \in \Gamma_{(\beta)}\}$ such that

$$\overline{W}_{\beta} = \overset{\frown}{=} \{H_{i\beta}; i \in \Gamma_{(\beta)}\},\$$

$$H_{i\beta} \cap H_{j\beta} \cap ((X_i \cap \overline{W}_{\beta}) \overset{\frown}{=} (X_j \cap \overline{W}_{\beta})) = (X_i \cap \overline{W}_{\beta}) \cap (X_j \cap \overline{W}_{\beta}),\$$

$$X_i \cap \overline{W}_{\beta} \subset H_{i\beta},$$

by Theorem 2. Let us set $H_i = \bigcup_{\beta} \{H_{i\beta}\}$ where the sum extends over β such that $i \in \Gamma_{(\beta)}$. Then H_i is clearly closed. It is obvious that $X_i \subset H_i$ and $H = \bigcup \{H_x\}$. We shall show $H_i \cap (X_i \smile X_j) \subset X_i$. Let x be any point of $H_i \cap (X_i \smile X_j)$. Then for some β , $x \in H_{i\beta}$. Since $H_{i\beta} \subset \overline{W}_{\beta}$, $x \in H_{i\beta} \cap ((X_i \cap \overline{W}_{\beta}) \smile (X_j \cap \overline{W}_{\beta}))$ and hence by Lemma 1 $x \in (X_i \cap \overline{W}_{\beta})$ and consequently $x \in X_i$. Therefore $H_i \cap (X_i \smile X_j) \subset X_i$. The proof is completed.