
No. 3] 141

34. Note on an Extension of Multiplication of Distributions

By Tadashige ISHIHARA
Department o3 Mathematics, Osaka University

(Comm. by K. KUNUGI, M.J.A., March 12, 1955)

Multiplication o2 distributions are considered by L. Schwartz (1)
in his text-book in case only when one of the distributions is a non-
2unction at each step of multiplication. Indeed, according to the
ordinary definition we can not consider other sort of multiplication.

Meanwhile in some applied branches (for example in the calcula-
tions of S-matrix by the power series expansions of coupling constant
(J. Schwinger (2), F.J. Dyson (3), etc.)), we meet usually rather
extraordinary multiple several numbers o2 whose multiplicand are non-
unction distributions. So it will be desired to examine the possibility
of extension o2 its definition t the case in which more than two
non-functions can occur. (We shall need such examinations also in
the case when we want to examine whether or not we are able to
consider the non-linear equation whose solution is a non-function
distribution.)

Recently L. Schwartz (4) has pointed out the impossibility o
the associative multiplication including and the derivative opera-
tion 2rom purely algebraic consideration. In this paper we study
the extended multiplication mainly from the topological consideration.
That is to say, if the multiplying operation T->QT by a fixed dis-
tribution Q, is defined by the contragradient mappings o-->oQ 2or
cp e , then the structure of the space = [pQ cp } determines
the nature o2 he multiplication. So i2 we require some conditions
for the topology of the space (whose algebraic structure is assumed
to be the same as in the space ), we can determine the range of
the multiplicands and the multiples independently 2rom the other
algebraic requirements such as the law of the derivation or o the
association except the linearity o2 the multiplication which is always
assured by this sort of definition.

The main result o2 this paper studied along this line is the
ollowing: Considering two multiplicands, i we impose a condition
(C) upon the extended multiplication, then we can consider at most
a multiple T such that either T is essentially an ordinary multiple
of Q and o a e ) or T is a limit in ’ o ordinary multiple a.Q.

Concerning the terminologies used in this paper, see or example
L. Schwartz (1), N. Bourbaki (5), and J. Dieudonn6 (6).

1. For a fixed distribution Q( e ’) we consider he vector space
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= [qQ cp 7)} which is the subspace of , where cpQ means the
ordinary multiplication in .

We consider further the condition:
(A) the locally convex topological vector space contains both

Now we define the extended multiplication o by
(B) (T, a)’,=(ao ) for e,

( T, e} a’,a (Q T, } for e e ,
where is the dual space of and (, },, is the scalar product
between these spaces.

In order to construct the space so that the right hand side
of (B) means (,}’, (i.e. Q T or ao T defines a distribution),
the following condition (C) is obviously necessary and sufficient.

(C)’ iT, Q} or (T, ca) is a continuous linear functionals for

In our case, the linearity is automatically satisfied if we con-
struct the spaces and as above. Concerning the continuity we
take a rather strong sufficient condition (C).

(C) The mappings from to (C) a, (for any fixed
a ) and (C) Q are continuous.

The bilinearity of the above constructed multiplication is assured
in the following sense

+ Q)oT= T) + ,(QoT)

Qo(T +,T)= (QoT) + $, (QoT).
Here +u means the additive operation in the vector space .

Further we require the condition our multiplication o being an
extension of the ordinary one.

(D) e is imbedded in preserving its ordinary multiplication
i.e. for any e e and a e , QoB=BQ and

Now the set of topological spaces with topologies r makes a
semi-ordered set in the meaning such that (r,)>(r,) means
contains ?I and r is finer than the relative topology r, of r on
I. In this case the dual space 2 does not always contain but
if we consider the restriction defined on of 2 then we see
I,. So, in order that we may find the maximal range of the
multiplicands by our scheme it is necessary and sufficient to require
the following condition (E).

(E) is the least space which satisfies the conditions (A), (C),
and (D) having the finest locally convex topology.

Temporarily in place of (E) we require
(E) is the least space which satisfies the condition (A).
(E) has the finest (if comparable) locally convex topology

which satisfies the conditions (C) and (C).
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2. From the conditions (A) and (E), we see immediately that
is the sum of the spaces and . Denoting , by 0 and

the vector space [(q,-q) qeo} by Tt0 we see the vector space
(--/) is algebraically isomorphic to the quotient space
(-@))/0 where ([1) means the direct sum.

Now if we denote the direct sum topology r,(R),a of the two
topologies r, and , in the direct sum space ). and its
quotient topology (by o)by r,+,a then we can see that the
topology -,,+,a of the space is finer than the topology r. of
the space gt which is homeomorphic to

For any neighborhood V of 910 there exist U and W such
that for V=f-(V), where f means the above isomorphic mapping
from on 9l,

VU+WU,-, ’ + W,", ,.
Since f(d +q)--(f(d), f.(q))+ gto for d , q , we have

V D(f
Here f(d)-Pr f(d), f(q)--Praf(q), for" d e , q e , where Pr or

Pra means the projection to the space or , and Q/, ) means
the subsets {(a, b)[a , b e } in the space .

We can also see that if r and ra are finer than r, andr,a
respectively, then the above sum topology r+a is finer than the
topology rv,+, a. Moreover if w is the locally convex topology
of the vector space which satisfies the condition (C), and if
is the locally convex topology of the vector space which satisfies
the condition (C.), then the space which is the inverse image
f-() of the space having sum topology r/a satisfies the condi-
tions (A), (C), and (C), since r, r and ,ara. Thus we obtain
the following lemma.

Lemma 1. If there exist a finest locally convex topology and- which satisfy (C), (C) then the spce which corresponds to the
space having the sum topology + satisfies the conditions (A), (C),
(c,.), (E,),

Now the topology of the space in Lemma 1 is nothing but
the ordinary topology of the space by the conditions (C) and (E.),
so we have only to find the finest locally convex topology of the space
k’; in order to construct the desired topological vector space .

We denote the polar of the space (in the space )by o i.e.

[o[l(cp,Q) l-<-I for any e} (which is the sameo= o=
[ol (cp, Q) =0 for any e }), then 0 is a weakly closed convex
subspace (therefore closed convex subspace) of the topological vector
space [(5). The algebraic structure of is isomorphic to the factor
space /,22o. So the finest locally convex topology of which saris-
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ties the condition (C) is he one which is homeomorphic to the
ordinary quotient topology r/ao.

Now we can cancel the phrase "if comparable" in the conditions
(E), and we have the following lemma.

Lemma 2. The finest loSally convex topological vector space which

satisfies the conditions (A), (C), (C) is the above defined :
=f- (t), =+=()/o

where the space has the topology such that is isomorphic to the
topological vector space /o (having quotient topology) and the space

has the ordinary topology.
3. Since -()/?o, is isomorphic to the orthogonal

(=polar) space (0) of the space o in the direct product space

’5. The scalar product for an element n-(, Q)+o of Ol and
an element n-(n, n) of , is given by

where , e and n e , n e .
The dual space is isomorphic to the space (/o),, and the iso-

morphic mappings h, h between these spaces are given as follows:

h maps (e/) to Q(e) and h maps T(e(/)’) to
h(T) (e ’) defined by the following equation (j).

iT, (T,
Now for Z(x)Q taken as T where Z(x)e, we see (h(ZQ),

V)a’,c- (BQ, ),,= (Z, Q)e,e’, for any Q e . To examine

the condition (D) in the space ’ we identify (B, h(BQ))e with

B e . Then we can see (D) is satisfied as follows"

and /aoB, )’,-(B, a),,

So we see that the space ’ satisfies (A), (B), (C), (D), and (E).
As we have seen hitherto, the range of the possible multi-

plicands is determined by the requirements (A), (B), (C), and (E) while
the condition (D) is satisfied by the space . Similarly the follow-
ing properties hold in the space without special requirements.

(1) T( e ) restricted on defines a distribution n such that
T=g(n, nJ), and the equality aog(n, nJ)- an holds on for any
a e where g denotes the isomorphic mapping from to .

(2) Similarly o the identifying of B e we can identify some
T e with (T, h(TQ))e in case when TQ is a well defined dis-
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tribution in the meanings of the ordinary multiplication (for example
when T e and Q e ’’, or T e’ and Q e @ etc.). In this
case of course it holds a og(T, hf(TQ))--aT for any multiplicable
a)r.

(3) The mapping from (@ ’) to (a, T)aoT is separately
continuous.

(4) The mapping from to , T--->QoT is continuous. This is
seen from the fact that [pQlcp e B} is a bounded set in where
B denotes a bounded set in the space .

(5) Considering in he space 0’% obviously (Q + Q) T----
QoT+ Q.oT, where Pq, denotes the space which corresponds to Q.

(6) The Leibnitz’s formula holds under the following definition
of derivative in ’ in the case when each argument has the mean-
ing. For T e ’, we define DT by (DT, p},,= (T, D*p,, for
any p where D*p means the conjugate derivative of p in the
meaning of the one in ).

(7) We have hitherto discussed the extended multiplication
QoQ with two multiplicands. But we can iterate this multiplication
taking the distribution QoQ. as Q again and generally we can con-
sider a multiplication with n multiplicands ((...(QoQ.)oQ)o... Q,).

We see that this iterated extended multiplication can occur in
the case when one of the distributions is a non-function distributions
at each step of multiplication, using the identification mentioned in
(2) and we see its value coincides with the ordinary one. Therefore
we can see hat the associative law does not always hold. For ex-
ample ($ox)ol/x=O and o(xol/x)=l, where roughly speaking,
(ox)ol/x means i$o(x, x)}o (i/x, l/x), and o(xol/x) means o([xo(1/x,
l/x)}, [zo(/x, l/z)}).

Remark. h corresponds to the division operator by Q, and the
expression h(BQ) or h(TQ) is not necessarily uniquely determined
for ZQ or TQ though (h.(BQ), c,oQ} or (h(TQ), c,oQ} has a definite
value. For example h(x)=(x)for any :(0)=0, and h,((x)x)=
(x)+c for any constant c, where he denotes the mapping h. con-
cerning Q.

4. Any element p’(=g(n, n)) of the space r is multiplicable
by a + Q(a e J) and its value is

(p’, a + cpq} v’, v (n, a} ,, + (n, c,oQ}a,, a.
As we see here, so far as the possibility o2 the multiplication con-
cerns we have only to consider the spaces and , though we
were dealing until now with the spaces and . In fact, we can
discuss about the least space with the finest topology under the
sole requirement (C) in a similar way as above.

Now the space is isomorphic to the space since (/o), is
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isomorphic to the orthogonal subspace 0o of !5 in the space and

00 coincides with the closure 5 of the space
Any element S. of the space (or S-=g(S, &) of ) can be

multiplied by Q and defines the multiple &oQ (or SoQ) which belongs

to :5. Conversely any element T of the space is considered
a multiple of Q by certain element h.(T)( ’) as already seen in

(j). Especially if T belongs to the subspace of , putting T--BQ
where B e , we see h.(T)can be identified with B as above and this
coincides with the ordinary multiplication. Thus we have the
following

Theorem.. A multiple ToQ of T( ’ (or ’)) by Q( ’)
which satisfies the condition (C1) (or (A), (C,), and (C,.)) is possible if
and only if QT e . In other words we can consider a multiple QoT
if and only if QoT is an ordinary multiple aQ of Q by a( e @) or
QoT is a (strong) limit in .’ of ordinary multiple aQ.

Under the same requirements as in the theorem we have follow-
ing two corollaries.

Corollary 1. If , is closed in ’ then essentially wider extended
multiplication o is impossible.

Corollary 2. T e ’ is multiplicable (o) by Q if and only if
T h(s).

Remark 1. Similar consideration is possible also in the case
.) and

Remark 2. The theorem combined with other theorems regard-
ing 00 will give other corollaries or criterions. For example, com-
bined with the theorem by L. Schwartz (7) "Pour que la distribu-
tion T d’ordre m (fini ou infini) soit solution de la famille d’4quations
multiplicative QT=O (oft Q} sont une famille de fonctions de (()
qui satisfont l’4quation multiplicative Q,0. Q=0), il fau et il suffit
qu’elle soit limite dans (’) ou faiblement dans 3)’ de combinaisons
lin4aires finies de distributions supports ponctuels d’ordre__<m,
solutions de la famille d’quations", our theorem gives a criterion
of T being a multiple SoQ of Q.
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