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33. Remarks on the Jordan-Holder-Schreier Theorem*’

By Tsuyoshi FUJIWARA
Department of Mathematics, Yamaguchi University
(Comm. by K. SHODA, M.J.A., March 12, 1955)

The Jordan-Holder-Schreier theorem, or shortly the J-H-S theo-
rem, in lattices has been considered as the formulation of the J-H-S
theorem for algebraic systems. But, A. W. Goldie has proved in
his paper [3] the usual theorem on lengths of chaing in modular
lattices, using the Jordan-Holder theorem for algebraic systems. In
this note, the relations between these theorems will be more cleared.
First, we shall show the J-H-S theorem for algebraic systems (§1).
Next, considering a lattice L as the algebraic system with the
composition | only, we shall introduce a theorem for normal chains
of L as the special case of the above theorem. And this theorem
will be shown to be the usual J-H-S theorem in the lattice L (§ 2).

8§ 1. Algebraic Systems. In this note we put the following
conditions on the algebraic system A to keep out the complication:

0. All compositions are binary and single-valued, moreover any
two elements may be composable by any composition.

I. A has a null-element e.

We denote by 6(B), ¢(B),... the congruences on a subsystem
B of A. Moreover we denote by @ the set of all congruences on
all subsystems of A4, i.e. @={0(B): BC A}.

Two congruences 6(B) and ¢(C) are called weakly permutable if
and only if

(SOBA~C) | p(BAC)=(S(@(B~C))16(B~C)).
Moreover a congruence o(B~C) is called a quasi-join of 6(B) and
»(C), if and only if

i) o(BA~C)=6(BA~C)wp(B~C) and

i) S(@(B~C)=SOB~C)wp(B~C)).

A subset @ of O is called a normal family, when @ has the
following conditions:

i) Any two congruences in @ are weakly permutable.

ii) For any congruences 6(B), #(C) in @, there exists a quasi-
join w(B~C)e® such that [w(B~C)[0(B)], [o(B~C)|p(C)]ed.
Such a quasi-join o(B~C) is called a normal quasi-join.

A normal chain

M=A4,5 SO4AN=4,D--D8(0,-+(4,-))=A=N

%> In this note, we shall use the theorems, the terms and the notations in [1]
and [2], without the explanations.
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is called an (M, N)-@-normal chain, when any 6,(A4;) is a congruence
in a given normal family @.

Theorem 1 (Schreier theorem for algebraic systems). Let

M=A4,280(4)=A4;D--D S(0,-(4,-1))=4,=N and

M=B, D S(py(B))=8B,D" D S(ps-s(B, 1))=B,=N
be any two (M, N)-P-normal chains. Then these chains can be refined
by interpolation of terms A ;=(A;~B;|0,(A))=8S[w;-1(Ai~Bj_y)|
0, (Az)](At,y'—l)) and B, ;= (A;~B,| P;(By) = S([wt—l,j(At—l’\Bj) ‘ SDJ(BJ)]
(Bi-1,5)) such that

At:"j/ [wt,j(Acf“Bj) | 91(Az)] = Bt,j/ [wt,j(Az ’“Bj) | ¢,-(BJ-)],

where w;, (A,~B;) are normal quasi-joins of 6,(A;) and ¢, B;) respect-
wwely.

Proof. This theorem may be obtained by the same way as the
proof of Theorem 7 in [2].

§ 2. Lattices and J-systems. Hereafter we assume that a lattice
L has the least element 0 to keep out the complication. A lattice
L is called a J-system, when L is considered as a algebraic system
with the composition |J only. And the element 0 is considered as
the null-element of the J-system L. A J-congruence means a con-
gruence on a J-system, and an ¢deal means an ideal of lattices in
the usual sense.

By Definition 1 and Theorem 1 in [2], any ideal of the J-system
L is a normal sub-J-system, and conversely. Moreover the lower-J-
congruence ¢ with respect to a normal sub-J-system N is defined
by ¥y 2 dn ¢ N: nox=nw—y. In particular when N is a principal
ideal 7/0, 6 is defined by 21y T nwr=n<y.

A lower-J-congruence 6 which is defined on a sub-J-system m/0
and whose normal sub-J-system is »/0, is called an (m/0, n/0)-con-
gruence. In particular when n is m/0-modular, 6 is called a modular
(m/0, n/0)-congruence, or simply a modular congruence.

Lemma 1. Let 0 be an (m/0, n/0)-congruence. Then the quotient
mn is o representative system of the residue classes of mj0 with
respect to 6, and (m/0)/0 is join-isomorphic to the quotient m/n.

Proof. Let x ¢ m/0. Then nwx=nw—(nw1), i.e. x~n—x. Hence
any class contains an element of m/n. On the other hand, let
z,yem/n and v =y. Then nwx—=x *+y=n-y. Hence z and y are
not contained in a same class. Therefore m/n is a representative

system of the residue classes, and (m/0)/0 is join-isomorphic to the
quotient m/n.

Lemma 2. Let 6(m/0) be a modular (m/0,n/0)-congruence, and
a contained in L. Then 6(m~a/0) is a modular (m~a/0,n~a/0)-
congruence.
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Proof. n~a/0 is evidently the normal sub-J-system with respect
to (m~a/0), and by Theorem 2 in [1], n~a is m~a/0-modular.
Hence 6(m~a/0) = the modular (m~a/0,n~a/0)-congruence . On
the other hand, let , y ¢ m ~a/0 and v~y. Then n—x=n—y. Hence
(mA~a)y~(n—x)=(m~a)~(n-—y). By the m/0-modularity of =, we
get (m~a~n)wzr=(m~a~n)—y. Hence (n~a)—wx=(n~a)-y, ie.
x<y. Hence 6(m~a/0) < p. Therefore (m~a/0) is the modular
(m~a/0, n~a/0)-congruence .

Lemma 3. Let 0 be a modular (m/0, a/0)-congruence, and ¢ a
modular (m/0,b/0)-congruence. Then (S(6)|p)=(S(®)|8)=a>/0.

Proof. Let xe(S(@)|p). Then there exists a’ ¢ S(6)=a/0 such
that box=b-—a’. Hence by bwa' <b-a, we get x¢ca-—>b/0. Con-
versely, let ye a—b/0. Then by the m/0-modularity of a, we get
(b~y)~a)—b=(b—y)~(a~b)=b-wy. Hence y<X(b—y)~aca/0=S(),
i.e. ye(S@)|p). Therefore we get (S(0)|p)=a—>b/0. Similarly we
get (S(p)16)=a—b/0.

Lemma 4. The set € of all modular congruences forms a
normal family. In other words, let 6(m/0) be & modular (m/0, a/0)-con-
gruence, and o(m'/0) a modular (m’/0, a’/0)-congruence. If o(m~m'/0)
=0(m~m'[0)~ p(m~m']0), then [o(m~m’/0)]|6(m/0)] is a modular
(m~m")~a/0, (m~a')—a/0)-congruence, and [w(m~m'/0)|p(m'[0)] s
a modular ((m~m')y—a’(0, (m' ~a)—a’/0)-congruence.

Proof. By Lemma 2, 8(m~m’/0) is a modular (m ~m'/0, m’ ~a/0)-
congruence. Similarly o(m~m'/0) is a modular (m~m'/0, m~a'[0)-
congruence. By Lemma 8, o(m~m’/0) is a quasi-join of 9(m/0) and
@(m'/0). By Theorem 4 in [2] and Theorem 5 in [1], w(m~m'/0)
is a modular (m~m'/0, (m' ~a)—(m~a')/0)-congruence.

Now we shall prove that [w(m~m’/0)|60(m/0)] is a modular
(m ~m') <~ a/0, (m ~a') —a/0)-congruence . First, by the m/0-
modularity of a, [w(m~m'/0)]|6(m/0)] is defined on (m~m')—a/0
and its normal sub-J-system is (m~a’)—a/0. Moreover by the
m~m'/0-modularity of (m’'~a)w(m~a'), it is clear that (m~a')—a
is (m~m')—a/0-modular. Hence [w(m~m/[0)]|6(m/0)] = the modular
congruence VY. On the other hand, let x and y be congruent by
[o(m~m/[0)[6(m/0)]. Then by the m/0-modularity of ¢ and Theorem
1in [1], we get

(%) [(@—wa)~(m~m)]wa=x—a.
Hence s~(@wa)~(m~m'). Similarly y=(y—a)~(m~m’). Hence
@—a)~(m~m') and (y—a)~(m~m') are congruent by [w(m~m//0)]
6(m/0)] and contained in the domain of w(m~m’/0). Therefore

(@—a)~(m~m') and (y—a)~(m~m') are congruent by w(m~m'/0),
i.e.
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[(m ~a)~ (m~a')]~ [(@~a)~(m~m)]
:[(m//\a,)v(m/\a/)]v[(yua)m(m,\ml)].
Join a to both sides of this identity, and using (x), we obtain
(m' ~a)—(m~a')— (@ a)=m'~a)—(m~a)(y—a).

Hence[ (m~a')—alwaz=[(m~a)~a]—y,ie. xLy. Hence[w(m~m'/0)|
0(m/0)] <. Therefore [w(m~m'/0)]6(m/0)] is the modular ((m ~m')
—a/0, (m~a')—a/0)-congruence Y. Similarly [w(m~m'/0)]|y(m'/0)]
is the modular ((m~m')—a’/0, (m’' ~a)—a'/0)-congruence.

Combining Theorem 1 and Lemma 4, we can immediately obtain
the following

Theorem 2 (Schreier theorem for J-systems). Let

m/0=a,/0 D S(0,(/0))=a,/0 D - - D S(6,_,(a,-1/0))=a,/0=1n/0,

m[0=0,/0 2> S(p4(bo/0))=0,/0 D+ - - D S(p;-1(bs-1/0)) =b,/0 =10
be any two (m[0,n/0)-P-normal chains. Then these chains can be
refined by interpolation of terms a;;/0=a;.,~(a,~b;)/0 and b, ;/0=b;.,
< (a,~b))/0 such that (a;;/0)/6;; and (b ,;/0)/p;; are join-isomorphic,
where 6,; is the modular (@, ;/0, a,;../0)-congruence, and @, ; is the
modular (b, ;/0,b,.4,;/0)-congruence.

By Lemma 1, the join-isomorphism between the quotients a, ;/a; ;..
and b,;/b,.,; is obtained from (a;/0)/6, ==, ;/0)/p,; Hence the
quotients a, ;/a;;., and b;,/b;,.,; are also isomorphic as lattices.
Therefore translating Theorem 2 into the language of lattices, we
can immediately obtain the following usual theorem in lattices:

Theorem 3 (Schreier theorem in lattices). Let

M=y >0 >+ >0e=n and m=>b,>b,>:-->b=n
be any two m/n-modular chains on 0. Then these chains can be refined
by interpolation of terms a;;=a;.~(a;~b;) and b, ;=b;.,—(a,~b;) such
that corresponding quotients a, ;/a; ;. and b ;/b..,,; are isomorphic.
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