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33. Remarks on the Jordan.HSlder.Schreier Theorem*

By Tsuyoshi ]UJIWARA

Department of Mathematics, Yamaguchi University

(Comm. by K. SIOD, M.b.A., March 12, 1955)

The ;lordan-HSlder-Schreier theorem, or shortly the J-H-S theo-
rem, in lattices has been considered as the formulation of the d-H-S
theorem for algebraic systems. But, A. W. Goldie has proved in
his paper 3 he usual theorem on lengths of chains in modular
lattices, using the ;Iordan-HSlder theorem or algebraic systems. In
this note, the relations between these theorems will be mo.re cleared.
First, we shall show the J-H-S theorem or algebraic systems ( 1).
Next, considering a lattice L as the algebraic system with the
composition ) only, we shall introduce a theorem or normal chains
of L as the special case of the above theorem. And this theorem
will be shown to be the usual J-H-S theorem in the lattice L ( 2).

1. Algebraic Systems. In his note we put the following
conditions on the algebraic system A to keep out the complication:

0. All compositions are binary and single-valued, moreover any
two elements may be composable by any composition.

I. A has a null-element e.
We denote by (B), cp(B),.., the congruences on a subsystem

B of A. Moreover we denote by 0 the set o all congruences on
all subsystems of A, i.e. 0-- {0(B) B A}.

Two congruences O(B) and o(C) are called weakly permutable if
and only if

(S(O(B,-,C)) qo(BC))--(S(o(BC)) O(BC)).
Moreover a congruence oo(BC) is called a quasi-join of O(B) and
o(C), if and only if

i) oo(BC) _>..._ O(B,-,C)qo(B,-,C) and
ii) S(oo(B,-,C))----SO(B,C)o(B,-,C)).
A subset (P of 0 is called a normal family, when has the

following conditions:
i) Any two congruences in are weakly permutable.

ii) For any congruences O(B), o(C) in , there exists a quasi-
join oo(B,-,C) e 0 such that [oo(BC) O(B), [oo(B,-,C) o(C)]
Such a quasi-join oo(BC) is called a normal quasi-join.

A normal chain
M=AoD S(Oo(Ao))=A. D S(O_(A_))=A=N

In this note, we shall use the theorems, the terms and the notations in [1]
and [2], without the explanations.
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is called an (M, N)-P-normal chain, when any O,(A) is a congruence
in a given normal family .

Theorem 1 (Schreier theorem for algebraic systems). Let
M--A.o S(o(Ao))--A . . S(_(A_))-A--N and
M=Bo Z(oo(Bo))--B

be any two (M, N)-O-normal chains. Then these chains can be refined
by interpolation of terms
e(A)J(A,,_)) and B,, (AB o(B)) S(o_,(A_B) q(B)
(B_,,)) such that

A:/o,.,(AB) O(A) J B,/o,(AB) q(B),
where o,(AB) are normal quasi-joins of e(A) and o(B.,) respect-
ively.

Proof. This theorem may be obtained by the same way as the
proof of Theorem 7 in 2.

2. Lattices and *systems. Hereafter we assume that a lattice
L has he least element 0 to keep out the complication. A lattice
L is called a J-system, when L is considered as a algebraic system
with the composition (J only. And the element 0 is considered as
the null-element o the J-system L. A J-congruence means a con-
gruence on a J-system, and an ideal means an ideal of lattices in
the usual sense.

By Definition 1 and Theorem 1 in 2], any ideal of he J-system
L is a normal sub-J-system, and conversely. Moreover the lower-J-
congruence with respect to a normal sub-J-system N is defined

by xytn e N: nx--ny. In particular when N is a principal

ideal n/O, is defined by xynx--ny.
A lower-J-congruence which is defined on a sub-J-system m/O

and whose normal sub-J-system is n/O, is called an (re n/O)-con-
gruence. In particular when n is m/0-modular, is called a modular
(re n/O)-congruence, or simply a modular congruence.

Lemma 1. Let 0 be an (re n/O)-congruence. Then the quotient
m/n is a representative system of the residue classes of m/O with
respect to 0, and (m/O)/O is join-isomorphic to the quotient m/n.

Proof. Let x m/O. Then nx=n(nx), i.e. xnx. Hence
any class contains an element of m/n. On the other hand, let
x,ym/n and xy. Then nx=xy-ny. Hence x and y are
not contained in a same class. Therefore m/n is a representative
system of the residue classes, and (m/O)/O is join-isomorphic to the
quotient m/n.

Lemma 2. Let O(m/O) be a modular (re n/O)-congruence, and
a contained in L. Then O(ma/O) is a modular (ma/O,na/O)-
congruence.
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Proof. na/O is evidently the normal sub-J-system with respect
to O(ma/O), and by Theorem 2 in 1, na is m,a/O-modular.
Hence (ma/O) the modular (ma/O, na/O)-congruence p. On
the other hand, let x, y e ma/O and x--y. Then nx-ny. Hence
(ma),(nx)=(m,a)(ny). By the m/0-modularity of n, we
get (man)x=(man)y. Hence (na)x=(na)y, i.e.

xy. Hence O(ma/O)q. Therefore O(ma/O) is the modular
(ma/O, na/O)-congruence q.

Lemma 3. Let be a modular (m/O,a/O)-congruence, and cp a
modular (re b/O),congruence. Then (S(O) cp)--(S(q) O)-ab/O.

Proof. Let x (S()[cp). Then there exists a e S(O)-a/O such
that bx=ba. Hence by bab.a, we get xeab/O. Con-
versely, let ye a,b/O. Then by the m/0-modularity of a, we get

((by)a)b--(by)(ab)--by. Hence y ,(by)a a/O-S(O),
i.e. y e (S(O) lq). Therefore we get (S(O) lp)-ab/O. Similarly we
get (S(p) )=ab/O.

Lemma 4. The set of all modular congruences forms a
normal family. In other words, let O(m/O) be a modular (re a/O)-con-
gruence, and cp(m’/O) a modular (m/O, a’/O)-congruence. If o(m,m’/O)
--O(mm’/O)q(mm’/O), then (mm’/O) O(m/O)J is a modular
((mm’)a/O, (ma’)a/O)-congruence, and (mm’/O) q(m’/O) is
a modular ((mm’)a’/O, (m’a)a’/O)-congruence.

Proof. By Lemma 2, O(mm’/O) is a modular (mm’/O, m’,a/O)-
congruence. Similarly p(mm/O) is a modular (mm/O, m,a/O)
congruence. By Lemma 3, (mm/O) is a quasi-join of (m/O) and
q(m’/O). By Theorem 4 in 2.] and Theorem 5 in 1, (mm’/O)
is a modular (mm’/O, (m’,a)(ma’)/O)-congruence.

Now we shall prove that (mm’/O)lO(m/O)] is a modular
((m m’) a/O, (m a) a/0)-congruence @. First, by the re
modularity of a, _(mm/O)lO(m/O)J is defined on (m,m’)a/O
and its normal sub-J-system is (ma)a/O. Moreover by the
mm/O-modularity of (ma)(ma), it is clear that (ma)a
is (mm’)a/O-modular. Hence oo(m,m’/O) lO(m/O). the modular
congruence . On the other hand, let x and y be congruent by
(mm/O) lO(m/O). Then by the m/0-modularity of a and Theorem
1 in 1., we get

(,) _(xa)(mm’)a--xa.
Hence x(xa)(mm’). Similarly y O(y,a) (mm’). Hence
(xa),(mm’) and (ya)(mm’) are congruent by (mm’/O)l
O(m/O)J and contained in the domain of (m,m/O). Therefore
(xa)(n,m’) and (ya)(mm’) are congruent by o(mm’/O),
i.e.
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F (m’,-,a)(ma’) F(xa)(m-,m’)
E(m’ a)(ma’)

Join a to both sides of this identity, and using (.), we obtain

(m a) (m a’) (xa) (m a) (ma) (ya).
Hence(ma)ax- (ma’)aJ y, i.e. xy. Hence (mm/O)!
e(m/O) . Therefore E(mm’/O) e(m/O) is the modular ((mm)
a/O, (ma)a/O)-congruence . Similarly (mm/O) (m’/O)J
is the modular ((mm’)a’/O, (m’a)a’/O)-congruence.

Combining Theorem 1 and Lemma 4, we can immediately obtain
the ollowing

Theorem 2 (Schreier theorem or J-systems). Let
m/O=ao/O S(eo(ao/O))=a/O D. S(O,_(a_/O))--a,/O--n/O,
m/O=bo/O S(o(bo/O))-b/O . S(_(b_/O))-b/O-n/O

be any two (m/O,n/O)--normal chains. Then these chains can be
refined by interpolation of terms a,/O=a+(ab)/O and b,./O-b.;+
(ab)/O such that (a,/O)/,. and (b,/O)/, are join-isomorphic,
where ,., is the modular (a,,/O, a,+/O)-congruence, and ,. is the
modular (b,/O, b+,/O)-congruence.

By Lemma 1, the join-isomorphism between the quotients a,./a,.+
and b,/b+, is obtained from (a,/O)/O,(b,./O)/,. Hence the
quotients a,./a,+ and b,:/b+, are also isomorphic as lattices.
Therefore translating Theorem 2 into the language of lattices, we
can immediately obtain the following usual theorem in lattices"

Theorem (Schreier theorem in lattices). Let
m-ao>a>... >a=n and m=bo

be any two rechains on O. Then these chains can be refined
by interpolation of terms a,-a+(ab:) and b,=b+(ab.) such
that corresponding quotients a,./a,.;+ and b,/b+, are isomorphic.
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