51. On the Property of Lebesgue in Uniform Spaces

By Kiyoshi Iséki

Kobe University

(Comm. by K. KUNUGI, M.J.A., April 12, 1955)

In this Note, we shall introduce a new concept, the property of Lebesgue in a uniform space.^{*)} Some properties of Lebesgue property in metric spaces were studied in 1950 by A. A. Monteiro and M. M. Peixoto ((2), (3)).

Let S be a topological space. A covering of S is a family of open sets whose union is S. The covering is called *binary* if it consists of two open sets or *finite* if it consists of a finite family of open sets.

Now we shall consider a separated uniform space E. Let \mathfrak{S} be the filter of surroundings of E. If $A \subset E$, and $V \in \mathfrak{S}$, we denote by V(A) the image of the set $(E \times A) \frown V$ by the projection of $E \times E$ onto the first factor E.

We say that a covering $\mathfrak{F} = \{O_a\}$ of *E* has the Lebesgue property if there is a surrounding *V* of \mathfrak{S} such that, for each *x* of *E*, we can find an open set O_a satisfying $V(x) \subset O_a$.

It is clear that, if any finite covering has the Lebesgue property, so is binary covering. We shall prove the following

Theorem 1. If a uniform space induced by \mathfrak{S} is normal and every binary covering has the Lebesgue property, then every finite covering has the Lebesgue property.

Proof. Let $O_i(i=1, 2, ..., n)$ be a finite covering of E. By the normality of E, we can find a covering $\{G_i\}$ such that $G_i \subset \overline{G_i} \subset O_i$. Therefore $\bigcup_{i=1}^{n} G_i = \bigcup_{i=1}^{n} \overline{G_i} = E$. Let $H_i = E - \overline{G_i}$, then, for each i, $\{O_i, H_i\}$ is a binary covering of E, and it has the Lebesgue property. Let V_i be a surrounding for the covering $\{O_i, H_i\}$, and put $V = \bigcap_{i=1}^{n} V_i$, then $V(x) \subset V_i(x)$ (i=1, 2, ..., n) for every x of E. Suppose that $V(x) \subset H_i$ (i=1, 2, ..., n), then

$$V(x) \subset \bigcap_{i=1}^{n} H_{i} = \bigcap_{i=1}^{n} (E - \overline{G}_{i}) = E - \bigcup_{i=1}^{n} \overline{G}_{i} = \text{empty.}$$

Hence there is at least one of i such that $V(x) \subset O_i$. Q.E.D.

To prove that any compact space has the Lebesgue property, we shall show the following

Theorem 2. The following two properties are equivalent:

^{*)} Throughout this Note, we use the basic concepts of uniform spaces in N. Bourbaki (1). We shall use the terminologies in P. Samuel (4).

(1) Any binary covering of a uniform space E has the Lebesgue property.

(2) For every pair of disjoint closed sets F_1 , F_2 , there is a surrounding V such that $V(F_1) \cap F_2 = F_1 \cap V(F_2) = O$.

Proof. (1) \rightarrow (2). Let $O_i = E - F_i$ (i=1, 2), then $\{O_1, O_2\}$ is a binary covering of E. Since the covering $\{O_1, O_2\}$ has the Lebesgue property, there is a surrounding V such that $V(x) \subset O_1$ or $V(x) \subset O_2$ for any x of E. If $x \in F_1$, then $x \in O_1$, hence $V(x) \subset O_2$. This shows that $V(F_1) \frown F_2 = O$. Similarly we have $F_1 \frown V(F_2) = O$.

 $(2) \rightarrow (1)$. Let $\mathfrak{F} = \{O_1, O_2\}$ be a binary covering of E. If $E = O_1$ or $E = O_2$, the theorem is trivial. Let $E \neq O_i$ (i=1, 2), then two sets $F_1 = E - O_1$, $F_2 = E - O_2$ are non-empty, disjoint and closed. Therefore, there is a symmetric surrounding V such that $V(F_1) \frown F_2 = F_1 \frown V(F_2) = O$. Let U be a symmetric surrounding such that $U \circ U \subset V$. Then we show $U(x) \subset O_1$ or $U(x) \subset O_2$. Suppose that there is an element asuch that $U(a) \not \subset O_1$ and $U(a) \not \subset O_2$. Therefore, there are $x_1 \in O_1$, $x_2 \in O_2$ such that $(a, x_1) \in U$ and $(a, x_2) \in U$. Since $x_1 \in F_1$, $x_2 \in F_2$, and $(x_1, x_2) \in U \circ U \subset V$, we have $V(F_1) \frown F_2 \neq O$, which is contradiction. Hence the equivalence is proved. Q.E.D.

From Theorems 1, 2, and a well-known theorem (see N. Bourbaki (1), Chap. 2, p. 162), we have

Theorem 3. If a uniform space is compact, it has the Lebesgue property.

Theorem 3 is a generalisation of a theorem by A. A. Monteiro and M. M. Peixoto ((3), p. 112). The relation between the Lebesgue property and uniformly continuity will appear in a later paper.

References

- 1) N. Bourbaki: Topologie générale, Chap. 1-10, Hermann, Paris (1940-1949).
- A. A. Monteiro and M. M. Peixoto: Note on uniform continuity, Proc. International Congress Mathematicians, 1, 385 (1950).
- A. A. Monteiro and M. M. Peixoto: Le nombre de Lebesgue et la continuité uniformé, Port. Math., 10, 105-113 (1951).
- P. Samuel: Ultrafilters and compactification of uniform spaces, Trans. Amer. Math. Soc., 64, 100-132 (1948).

No. 4]