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5. Proof of Theorem 2. We shall consider the integral

h= (logl )m‘f 9:(0) ln?w’dt’ (@0
/W
(IOg’co)a“ {f ~W[/w} I11+112’
say. Integrating by parts, we have
1 1—cos wt ™™
I, = (¢
" (log w)* [g O ]0

_ 1 gy b 8in wt— (1 —cos wt)
ooy %O tz at

[(1 l)w( g‘ﬂ”[ﬁofﬂm(m +) ]

=o0(1/log w)=0(1),
since gi(t)=o[t(log 1/t)*] by the assumption of Theorem 2. Also

-1 ™ 94(8) 1 " 9(8)
I ,= dt— tdt
1,2 (lOg' w)a+1 £w t t (l()g w)u+1 ’Z;w t COS w

=4L1,2,1 "Ix,z,z,
say, where

1 9. 1" 1
I, .=
Lt (log' (D)d'” l: t :lm:/u:l- (log w)‘“'l ;t/‘ ga(t) dt 0(1)

and

2(log @)**7, 5 ;=2 f 70 = % gt

27 /w T /w
_.f gu(t) COS wt dt_l_f * a(t) COS 151 dt

7jw

+ .{/ ) { g “ét) -~ g “:?;:/'c/o @) }cos wt dt.

The first term of the above expression is o[(log w)**!], as in the

estimation of I,, and the second term is o(1), as easily may be
seen. On the other hand, the third term becomes

fﬂ 9 =9+ m/0) oo ot dt
t
jw

1) Continued from p. 125. References are cited on p. 125.




No. 4] Riesz Logarithmic Summability of the Conjugate Derived Fourier Series. II 203

+ [/ ) golt+ w/w){——- TJ;-I;J;} cos wt dt
- [(log )2 J+" f 9ult + 7/ t(;f':/i)
=o|:(log‘ )2 J+ [ya(t+ /e )RET:/Z) ]:/w
) el eosot
=7 ["oitt+ o ’T(&Tn_(ff) dt=of (log ).

T/w
Collecting the above estimations, we find I,,,=o(logw). Hence we
get I, ;=o(logw). Thus we have
1 = 1—cos wt
5.1 —_ () ————"dt=0(1), as .
6D (logw)“z»of 00 = (1), 88 o—>eo
Integrating by parts and using the assumption of Theorem 2, we
get g...(t)=o0[(log 1/t)**'], and hence, as in the estimation of (4.6),
we can see
1—cos wt
2 TS () ———=22 dt=0(1
(5.2) Qg ] P05 oD).
Thus, by (4.6), (5.1), and (5.2), we get Theorem 2.
6. Proof of Theorem 3. We require some lemmas.
Lemma 3.2 If gy (@)=o[t'*"(log 1/t)*], for a>0 and §>8& >0,
then gu.1.s(8)=0[(log 1/£)**'*°], as t—>0.
Lemma 4. If we suppose that g.(t)=o[t(log 1/t)*], then g.**(t)
=o[t'*°(log 1/t)*], where >0 and B8=0.
Lemma 5.2 For a=0, §>0, we have
9:7°() — 943(0) = 8954 3(8) — 195 1(8)-
We shall now prove Theorem 3. By the assumption of the
theorem and by the formula (4.5), we get

f ﬂ[ga_z(t)—ga_l(t)]i———ct@—‘"—t—dt=0[(103 w)“‘:l-

However, by integration by parts,

f "[ga_z(t)—ga_l(t)]l_—g@w_t i

t
~[{or®—0d}1—eos )| "+ [ [ows®=0.) |sin ot e

—w f “[ga_l(t)—gu(t)] sin ot dt.

Il

2) Cf. Wang [6], Lemma 7.
3) Cf. Wang [4], Lemma 2.
4) Cf. Matsuyama [2].
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Hence we have
f "[gd_l(t)~g¢(t)] sin ot di=o |:(log w)“/w].
0
We put y(t)=g.-,(t)—9g.(¢) and
ry(t)~§ b sinnt, t € (0, o),

then the above argument shows that b{’=o[(log n)*/n]. Using the
theorem that Fourier series may be integrated term by term, we
have

1r . — D p 1—cos nt
| rdu= S A=

n=1 nt
= ﬁlo[ﬂog n)*/n]O(n*t*Int) + %} o[ (log n)*/n]O(1/nt)=0o[ (log 1/t)*].
Thus we obtain, by Lemma 3, o*°(¢)=o[t'*°(log 1/¢)*].
By Lemma 4, this implies that
8gL(t) —tg3(t)=o[ t**°(log 1/t)*].
On the other hand
d ar,-
8}‘+8t_t2t=8 ;+6 — },,+6t:—t1+6~— Gé'wt .
0hr(8)— tl ) =8+ (O)— L ghre(t) = — 0+ S 4o 0)|

Hence -‘% [t-sgya(t)]:o[aog 16¢]. But ¢-gw=0( [ ”

g.(u) du )

0

=o0(1). Accordingly ¢-°g.*(t)= o{ f t(log l/u)“du} =0 [t (log 1 /t)“}, that

is, gi*(t)=o[t'*°(log 1/£)*]. Thus, by Lemma 2, we have
Gor1+6(E)=o0[(og 1/£)*+1+%'], & >85>0,
which is the required result.
7. TFurther we shall prove the following theorem with stronger
assumption and conclusion.

Theorem 4. If we suppose that

(7.1) lim 9';29:0 (R, log, d)
>0

and

(7.2) li?(,n 9(&)=0 (R, log, o),
>

then the conjugate derived Fourier series of f(t) is (R, log, a+1)
summable to s at the point x, where 1>a>0 and g(t), p(t) are defined
as in §2.
Proof. Let £{t)=¢(t)/t. Then, by (4.1), we have
™

S R e —
_Z_{Rm@)—s}_ op 7 of s(t)[(a-l- 1)S4(wt) sm(wt)]dt
=(a+1)I!"‘Izy
say. Hence it is sufficient to show that I, and I, are o(1). For
this purpose, we firstly devide I, into three parts;
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L= (logw)”“»[ S+ f L+l

where 4=(1—a)ja>0. If we put &)= [ e@du and & ()=
o

[ \ £() \ du, then

0

II,S=W|:€‘(t)S (wt)] oo f E1)S! (wt) dt

—w

= | EY(? olt? o® > 1
= o ] S [+ f O,
which is o(1) by &4(¢)=0(1) and (8.2), and, by (8.1),

oL Teo Gomety]”

(log w)'** t

1 e[ Goaty ! (og ety gl o
+(log‘w)1+°°.{ 5“( AT “lat}=0aog oy
=o(1),

since £*(t)=0(t). Thus we have

L= oy ) [awsien dt

—o(1)+I( +a)T_W [t Siwn) du,

similarly as in the proof of (4.3). Thus we have I,=o0(1), as w—>co
(cf. the proof of (4.7)).

On the other hand, using the condition (7.2), we can show

similarly as in the proof of Theorem 1 that I,=o(1). Combining
these results, we get the required result.

8. We conclude this paper by stating two theorems of similar
type, without proof.

Theorem 5.° Let o(f)=p(, t):—;_{f(w £)+ f(x—t)—zs}.
Suppose that
f tgva_l(u) du=o [t(log 1 /t)“], as t—>0,
[}

and

fﬂ [¢’a—1(u+2"‘¢a—1(u) | du:O[(log I/t)u].

13
Then the necessary and sufficient condition that the Fourier series of

5) Of. Wang [4], Theorem B and Takahashi [3].
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F(t) should be summable (R, log, o), for t=x, to sum s, is that
l’i”")ﬂ QD(t)-———-O (R.y lOg, a)’
t>
where a=>1.
Theorem 6.° Let h(t)=(1/r) f ”{f(xm)-f(x—u)} /u du—s.
17
If we suppose that
f ) du:o[t(wg 1/t)°‘], as t-0,
0

and

fﬂ’ma<u+t)—h«(u>' du=of (log 1/ty**], as t>0,
u

then the conjugate Fourier series of f(t) is (R, log, a+1) summable
to sum s at the point x, where a=0.

6) Cf. Wang [7], Theorem 1.



