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105. On the Property of Lebesgue in Uniform Spaces. III

By Kiyoshi ISK
Kobe University

(Comm. by K. KuNugL M.J.A., July 12, 1955)

In my previous Note (3), we proved a heorem: If a uniform
spce E is normal and every bounded continuous fttnetion is uniformly
continuous, then any finite open covering of E has the Lebesgue prop-
erty.

First of all, following his valuable advice of Prof. dunji Hashi-
moto, we shall state the following

Theorem 1. If a uniform space E is normal, and any finite
open covering has the Lebesgue property, then every bounded continuous
function is uniformly continuous.

The proof is very similar to Theorem 2 of my Note (4), and
is contained in it. Therefore it will be omitted.

Throughout the remainder of this Note, we shall give a gerterali-
sation of a theorem by A. A. Monteiro and M. M. Peixoto (5), and,
as its application, we shall give conditions that uniform spaces be
comlact (in the sense of N. Bourbaki).

Theorem . Let E be a separated uniform space. If any open
covering of E has the Lebesgue property and E is precompact,2 then
E is compact.

The converse of Theorem 2 is clear rom Theorem 3 in my
Note (3).

Proof. Let =[0} be an open covering of E. Since the
covering’ , has the Lebesgue property, there is a surrounding V
such that V(x) 0, where a depends on x. From the precompact-
ness of E, we can find a finite collection A (i=1,2,...,n)of E
such that AAV (i=l, 2,...,n) and (JA-E. If xeA, then

AV(x), and hence for each i, there is an index a, such that
A,V(x) 0,. Therefore, since A, (i-l, 2,..., n) is a covering of

E, O--E, which prove Theorem 2.

From Theorem 2, we shall have the following
Theorem 3. A necesscrry and sufficient condition for a separated

uniform space E to be compact is that every open covering of E has
Lebesgue property and every continuous function of E reaches upper
bound.

1) For the undefined terminologies, see my two Notes (3), (4).
2) See the definition in N. Bourbaki (1), Chapter 2.
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Proof. It is clear that the condition is necessary. R. Doss (2)
proved that if, in a separated uniform space E, every continuous
function reaches its upper bound, E is precompact. Therefore the
sufficiency of Theorem 3 follows from Theorem 2 and the above-
mentioned result of R. Doss.

Before stating Theorem 4, we shall recall the following definition.
We call sequential compact a separated space in which every filter
with countable base has a cluster point, equivalently, every sequence
has an accumulation point.

It is well known that sequential compact separable, or metric
space, is compact.

Theorem 4. A necessary and sufficient condition for a separated
uniform space E to be compact is that any open covering of E has
the Lebesgue property and E is sequential compact.

Proof, Let E be a sequential compact uniform space. Then,
by P. Samuel’s theorem (P. Samuel (6), Theorem XV), E is precompact.
(We shall omit the detail of Proof.) Therefore, if any open cover-
ing of E has the Lebesgue property, by Theorem 2, E is compact,
and the converse of Theorem 4 is trivial. This completes the proof
of our theorem.
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