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6. On the Convergence Character of Fourier Series. II

By Magsakiti KINUKAWA
Natural Science Division, International Christian University, Tokyo
(Comm. by Z. SUETUNA, M.J.A., Jan. 12, 1956)

1. Let f(x) be an integrable function with periocd 27 and s,(x)
be the nth partial sum of its Fourier series. S. Izumi® has proved
the following

Theorem I. If f(x) belongs to the Lip a(0<a <1) class, then the
series

3.1 8a(2)— @) [*/n* (log m)”
converges uniformly, where 8=1—2a and y>1 or >2, according as
O<a<l/2 or 12=<a=<1.

In a previous paper,” we have shown that Theorem I is still
valid even if the restriction v>2 is replaced by y>1 for a=1/2.
The object of this paper is to show that the restriction v>2 in
Theorem I may be replaced by y>1 for a=1/2. In fact we prove

Theorem 1. Let 1=a>0 and k>0. If f(zx) belongs to the Lip «
class, then the series

S | 8(2)— f(@) I
nzjz n? (log n)"
converges uniformly, where §=1—ka and y>1.

Proof of Theorem 1. we have

5,(@)— flw)= 1 f " 0u(®) sin (n+1/2)¢/ (2 sin £/2) dt

_1 = . 1
=_ '0[ @,(D)p(t) sin nt dt + - Of @.(t) cos nt dt,

= n(x)+Q,,,(96),
where @,(t)=¢{)=Ffx+t)+ fle—t)—2f(x) and p(t)=cos ¢/2/{2sin t/2}.
We may take a number p’ such that »' =2, p=k and v >1/a
for given « and k.
By the Hausdorff-Young inequality, we get?’
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4) A denotes an absolute constant, which may be different in each occurrence, and
p’ denotes the conjugate number of p, that is, 1/p+1/p’=1.
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oo /v ~
{z | P,(x) sinnh lv’} <A f | p(E+ RYp(t + ) — p(t— BYp(t — ) |7 dt
n=1 ;
=a{ [T1gt+n—pt—n) P IpE+h) P dt

+ [ lp—n) 1o+ R —pe—0 1 dt]

=A{I(@)+J(2)},
where

(1) I(x) < h** T d,t << Appe-pet

=S +hy T
We divide J(x) into two parts such that
J@= [T+ [T =1@+ 7@,
where 0 "
JMéAfhl¢(t)l“’{lp(t+2h) 7+ () l”}dtgfht“"”dt

(2) < Ajprore
since ap—p>—1 by the assumption a«>1/p’, and

Ti@= [T 19t =n) P IpE+H—~pE—0) I dt
= [Tpw ¢ ipe+em-poyras "+ [

(3) gAh“”"’“+Ah"fﬂt°‘”‘2” dt < AR+t for 0<h<1,
h

gince ap—2p< —1.
Summing up the estimations (1), (2) and (8), we get

oo / ,
{2 an(x) sin nh I”' }pp éA for-p+1
n=1
Let h=m/20"", then we can easily see that
[ 2 1p@r}" sazee

n=2A—141
Thus we have
A

( 4 ) 22 {P,,,(x) Ip’ é A 27~(P—i—ap)p'/17 é A 27‘(1—1?'01«).

n=3rA—141
We may consider the case 0<k<p’. In this case we get by the

Hoélder inequality,
94

SEPICTEP DS

n=2A—141 n=2A=1l4

P@ )",

where kg'=p’ and q=9'/(»'—k). Hence, by (4),
( 5 ) “é I Pn(x) |Ic é A 27\[1/q+(1—p’a)/q’] é A 22a-ka),
n=2A"141

In the case p=Fk, we get also (5).
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For the proof of the theorem, it is sufficient to show that the
series

gl P, (&) 1*/n® (log n)"

is convergent, since the corresponding series containing @,(x) con-
verges obviously.

D P@) Pt (og ny =3 3 | Po(@) [/ (log my"

n=2 A=1n=2A—141
oo 1 PYS I~y 1
< LN E<< et .
= A}% 220w n-z%‘.‘1+1 | Ba@)] =A>§ y <
Thus we have proved the theorem completely.
2. In this section we shall prove
Theorem 2. Let 0<a<1 and 0<k. If

o 1y
| fa+t)—f@y 1 =Alele [ (log 1),
untformly, then the series

3 8(@)—£@) Pin®
converges uniformly, where §=1—ka and v>1/k.
Proof of Theorem 2. Using the notation in §1, we have

{i' P,(@) sinnk 1?'}”"" < AI@)+I@)},
where

Ix)<A hW‘P-O-l/ (log 7}1{)7::
and

J@) = A hl’u—pﬂ/ (log »i_)’rr

+h»{ [ " £ "} gro-s /(log%)“’dt 0<pu<1)

<A h”“‘”“/(log —1}; i .

Thus we get, by the same way used in §1,
A
22 an(x) ]P' éA 27\(1—1"4)/1‘1’1’"
n=2A—1+1

Hence, by the Holder inequality,
A

223 [Py x) < A a-ko Tk (A=1, 2, ).

n=2A—141
Summing up these inequalities with respect to 2, we get easily the
theorem.



