24. Uniform Convergence of Fourier Series. VI

By Masako Satô

Mathematical Institute, Tokyo Metropolitan University, Tokyo
(Comm. by Z. Suetuna, m.J.A., Feb. 13, 1956)
6. Furthermore we can improve Theorem 6, in the following form:

Theorem 7. If

$$
\begin{equation*}
\int_{\mathrm{o}}^{|h|}(f(x+u)-f(x)) d u=o(|h|) \text {, as } h \rightarrow 0 \tag{1}
\end{equation*}
$$

for a fixed x, and

$$
\begin{equation*}
\frac{1}{h} \int_{0}^{h}(f(t+u)-f(t-u)) d u=o\left(1 / \log \frac{1}{h}\right) \text {, as } h \rightarrow 0 \tag{2}
\end{equation*}
$$

uniformly for all t, then the Fourier series of $f(t)$ converges at x.
In other words the condition in Theorem 6

$$
\int_{0}^{|h|}|f(x+u)-f(x)| d u=o(|h|)
$$

is replaced by (1).
Proof. We put

$$
\begin{aligned}
s_{n}(x)-f(x) & =\frac{1}{\pi} \int_{0}^{\pi} \varphi_{x}(t) \frac{\sin n t}{t} d t+o(1)=\frac{1}{\pi}\left[\int_{0}^{\pi / n}+\int_{\pi / n}^{\pi}\right]+o(1) \\
& =\frac{1}{\pi}[I+J]+o(1) .
\end{aligned}
$$

Then by integration by parts

$$
I=\int_{0}^{\pi / n} \Phi_{x}(t)\left(\frac{\sin n t}{t^{2}}-\frac{n \cos n t}{t}\right) d t
$$

and hence, on account of (2), the absolute value of I is not greater than

$$
2 n \int_{0}^{\pi / n}\left|\Phi_{x}(t)\right| \frac{d t}{t}=o\left(n \int_{0}^{\pi / n} d t\right)=o(1),
$$

where $\Phi_{x}(t)=\int_{0}^{t} \varphi_{x}(u) d u=o(t) \quad$ as $n \rightarrow \infty(0 \leqq t \leqq \pi / n)$.
In order to evaluate J we now put (cf. [4])

$$
J=\int_{\pi / n}^{\pi} \varphi_{x}(t) \frac{\sin n t}{t} d t=J_{1}-J_{2},
$$

where

$$
\begin{gathered}
J_{1}=\sum_{k=1}^{(n-1 / 2} \int_{0}^{\pi / n} \frac{\varphi_{x}(t+2 k \pi / n)-\varphi_{x}(t+(2 k-1) \pi / n)}{t+2 k \pi / n} \sin n t d t, \\
J_{2}=\sum_{k=1}^{(n-1) / 2} \int_{0}^{\pi / n} \varphi_{x}(t+(2 k-1) \pi / n)\left(\frac{1}{t+2 k \pi / n}-\frac{1}{t+(2 k-1) \pi / n}\right) \sin n t d t,
\end{gathered}
$$

and further we divide J_{1} into two parts as follows:

$$
\begin{aligned}
J_{1}=\sum_{k=1}^{(n-1) / 2} & {\left[\int_{0}^{\pi / n} \frac{\varphi_{x}(t+2 k \pi / n)-\varphi_{x}(t+(2 k-1) \pi / n)}{2 k \pi / n} \sin n t d t\right.} \\
& \left.-\int_{0}^{\pi / n} \frac{\varphi_{x}(t+2 k \pi / n)-\varphi_{x}(t+(2 k-1) \pi / n)}{(t+2 k \pi / n) \cdot 2 k \pi / n} t \sin n t d t\right] \\
= & J_{11}-J_{12} .
\end{aligned}
$$

We write

$$
\begin{aligned}
J_{11}= & \sum_{k=1}^{(n-1) / 2} \frac{n}{2 k \pi}\left[\int_{0}^{\pi / n}[f(x+t+2 k \pi / n)-f(x+t+(2 k-1) \pi / n)] \sin n t d t\right. \\
& \left.+\int_{0}^{\pi / 1}[f(x-t-2 k \pi / n)-f(x-t-(2 k-1) \pi / n)] \sin n t d t\right] \\
= & \sum_{k=1}^{(n-1) / 2} \frac{n}{2 k \pi}\left[J_{11}^{1}+J_{11}^{2}\right],
\end{aligned}
$$

then

$$
\begin{aligned}
J_{11}^{1}= & \int_{0}^{\pi / 2 n}[f(x+2 k \pi / n+t)-f(x+(2 k-1) \pi / n+t)] \sin n t d t \\
& +\int_{0}^{\pi / 2 n}[f(x+2 k \pi / n+(\pi / n-t))-f(x+(2 k-1) \pi / n+(\pi / n-t))] \sin n t d t \\
= & \int_{0}^{\pi / 2 n}[f(x+2 k \pi / n+t)-f(x+2 k \pi / n-t)] \sin n t d t \\
& -\int_{0}^{\pi / 2 n}[f(x+(2 k-1) \pi / n+t)-f(x+(2 k+1) \pi / n-t)] \sin n t d t \\
= & \int_{0}^{\pi / 2 n}[f(\xi+t)-f(\xi-t)] \sin n t d t-\int_{\pi / 2 n}^{\pi / n}[f(\xi+\tau)-f(\xi-\tau)] \sin n \tau d \tau \\
= & \mathbf{2} \int_{0}^{\pi / 2 n}[f(\xi+t)-f(\xi-t)] \sin n t d t-\int_{0}^{\pi / n}[f(\xi+t)-f(\xi-t)] \sin n t d t
\end{aligned}
$$

where $\xi=x+2 k \pi / n, \tau=t-\pi / n$. By integration by parts and (2)

$$
\begin{gathered}
\int_{0}^{\pi / 2 n}(f(\xi+t)-f(\xi-t)) \sin n t d t=\left[\sin n t \int_{0}^{t}(f(\xi+u)-f(\xi-u)) d u\right]_{0}^{\pi / 2 n} \\
-n \int_{0}^{\pi / 2 n} \cos n t d t \int_{0}^{t}(f(\xi+u)-f(\xi-u)) d u \\
=o(1 / n \log n)+o\left(n \int_{0}^{\pi / 2 n} \frac{t}{\log 1 / t} d t\right)=o(1 / n \log n)
\end{gathered}
$$

and similarly

$$
\int_{0}^{\pi / n}(f(\xi+t)-f(\xi-t)) \sin n t d t=o(1 / n \log n)
$$

Hence we have

$$
\sum_{k=1}^{(n-1) / 2} \frac{n}{2 k \pi} J_{11}^{1}=\sum_{k=1}^{(n-1) / 2} \frac{n}{k} o\left(\frac{1}{n \log n}\right)=o\left(\frac{1}{\log n} \sum_{k=1}^{(n-1) / 2} \frac{1}{k}\right)=o(1),
$$

and quite similarly $\sum_{k=1}^{(n-1) / 2} \frac{n}{2 k \pi} J_{11}^{2}=o(1)$, thus we get $J_{11}=o(1)$.

On the other hand we put

$$
\begin{aligned}
& J_{12}=\sum_{k=1}^{(n-1) / 2} \frac{n}{2 k \pi} {\left[\int_{0}^{\pi / n} \frac{f(x+t+2 k \pi / n)-f(x+t+(2 k-1) \pi / n)}{t+2 k \pi / n} t \sin n t d t\right.} \\
&\left.+\int_{0}^{\pi / n} \frac{f(x-t-2 k \pi / n)-f(x-t-(2 k-1) \pi / n)}{t+2 k \pi / n} t \sin n t d t\right] \\
&=\sum_{k=1}^{(n-1) / 2} \frac{n}{2 k \pi}\left[J_{12}^{1}+J_{12}^{2}\right],
\end{aligned}
$$

then by integration by parts and (2), we have

$$
J_{12}^{1}=-\int_{0}^{\pi / n} F_{x}(t) \frac{(2 k \pi / n) \sin n t+n t^{2} \cos n t+2 k \pi t \cos n t}{(t+2 k \pi / n)^{2}} d t
$$

and hence

$$
\begin{aligned}
& \sum_{k=1}^{(n-1) / 2} \frac{n}{2 k \pi} J_{12}^{1}=\sum_{k=1}^{(n-1) / 2}\left(\frac{n}{k}\right)^{3} \int_{0}^{\pi / n} o\left(\frac{1}{n \log n}\right)\left(n t^{2}+4 t k\right) d t \\
& \quad=o\left(\frac{n^{3}}{n \log n} \sum_{k=1}^{n} \frac{1}{k^{3}}\left(\frac{1}{n^{3}}+\frac{k}{n^{2}}\right)\right)=o\left(\frac{1}{\log n} \sum_{k=1}^{n} \frac{1}{k^{2}}\right)=o(1)
\end{aligned}
$$

where $F_{x}(t)=\int_{0}^{t}[f(x+u+2 k \pi / n)-f(x+u+(2 k-1) \pi / n)] d u=o(1 / n \log n)$ uniformly for x and k as $n \rightarrow \infty(0 \leqq t \leqq \pi / n)$. In the same way we get $\sum_{k=1}^{(n-1) / 2} \frac{n}{2 k \pi} J_{12}^{2}=o(1)$, thus we have $J_{12}=o(1)$.

Finally we shall prove $J_{2}=o(1)$. By Abel's lemma

$$
\begin{aligned}
J_{2}= & \sum_{k=1}^{(n-1) / 2} \int_{0}^{\pi / n} \sum_{j=h}^{n}\left(\frac{1}{t+2 j \pi / n}-\frac{1}{t+(2 j-1) \pi / n}\right) \\
& +\int_{0}^{\pi / n} \sum_{j=1}^{n}\left(\frac{1}{t+2 j \pi / n}-\frac{1}{t+(2 j-1) \pi / n}\right) \varphi_{x}(t+\pi / n) \sin n t d t \\
= & J_{21}+J_{22},
\end{aligned}
$$

say. Then by integration by parts

$$
\begin{aligned}
J_{21}= & -\sum_{k=1}^{(n-1) / 2} \frac{\pi}{n} \int_{0}^{\pi / n}\left[\int_{0}^{t}\left(\varphi_{x}(u+(2 k-1) \pi / n)-\varphi_{x}(u+(2 k-3) \pi / n)\right) d u\right] \\
& \cdot \sum_{j=k}^{n}\left(\frac{n \cos n t}{(t+2 j \pi / n)(t+(2 j-1) \pi / n)}-\frac{\sin n t(2 t+(4 j-1) \pi / n)}{(t+2 j \pi / n)^{2}(t+(2 j-1) \pi / n)^{2}}\right) d t
\end{aligned}
$$

whence

$$
\begin{aligned}
J_{21} & =\sum_{k=1}^{(n-1) / 2} \frac{\pi}{n} \int_{0}^{\pi / n} \sum_{j=k}^{n}\left(\frac{n^{3}}{j^{2}}+\frac{n^{3}}{j^{3}}\right) o\left(\frac{1}{n \log n}\right) d t \\
& =o\left(\sum_{k=1}^{n} \frac{1}{\log n} \sum_{j=k}^{n} \frac{1}{j^{2}}\right)=o\left(\frac{1}{\log n} \sum_{k=1}^{n} \frac{1}{k}\right)=o(1)
\end{aligned}
$$

by condition (2). Furthermore, we have also by integration by parts

$$
J_{22}=-\frac{\pi}{n} \int_{0}^{\pi / n}\left[\int_{0}^{t} \varphi_{x}(u+\pi / n) d u\right]
$$

$$
\cdot \sum_{j=1}^{n}\left(\frac{n \cos n t}{(t+2 j \pi / n)(t+(2 j-1) \pi / n)}-\frac{\sin n t(2 t+(4 j-1) \pi / n)}{(t+2 j \pi / n)^{2}(t+(2 j-1) \pi / n)^{2}}\right) d t
$$

and applying condition (1)

$$
\begin{aligned}
& \left.\left|J_{22}\right| \leqq A \frac{1}{n} \sum_{j=1}^{n} \frac{n^{3}}{j^{2}} \int_{0}^{\pi / n} \right\rvert\, \int_{0}^{t}[f(x+u+\pi / n)-f(x)] d u \\
&+\int_{0}^{t}[f(x-u-\pi / n)-f(x)] d u \mid d t \\
& \leqq A n^{2} \int_{0}^{\pi / n}\left|\left[\int_{0}^{t+\pi / n}+\int_{0}^{\pi / n}+\int_{-\pi / n}^{0}+\int_{-\pi / n-t}^{0}\right](f(x+u)-f(x)) d u\right| d t \\
&=o(1),
\end{aligned}
$$

where A is an absolute constant. Thus the theorem is proved.
7. We can prove the following theorems analogously as Theorems 3, 4 and 5.

Theorem 8. Let $0<\alpha<1$. If

$$
\begin{equation*}
\int_{0}^{|h|}(f(x+u)-f(x)) d u=o(|h|), \quad \text { as } \quad h \rightarrow 0 \text {, } \tag{1}
\end{equation*}
$$

for a fixed x, and

$$
\frac{1}{h} \int_{0}^{h}(f(t+u)-f(t-u)) d u=o\left(1 /\left(\log \frac{1}{h}\right)^{\alpha}\right) \text {, as } h \rightarrow 0
$$

uniformly for all t, and further nth Fourier coefficients of $f(t)$ are of order $O\left(e^{(\log n \mathrm{~s} \alpha} / n\right)$, then the Fourier series of $f(t)$ converges at x.

Theorem 9. Let $\alpha>1$. If (1) holds and

$$
\frac{1}{h} \int_{0}^{h}(f(t+u)-f(t-u)) d u=o\left(1 /\left(\log \log \frac{1}{h}\right)^{\alpha}\right) \text {, as } h \rightarrow 0
$$

uniformly for all t and the nth Fourier coefficients of $f(t)$ are of order $O\left(e^{\log \log n, \alpha} / n\right)$, then the Fourier stries of $f(t)$ converges at x.

If $\alpha=1$, then the conclusion holds when $O\left(e^{(\log \log n) \alpha} / n\right)$ in the last condition is replaced by $O\left((\log n)^{\top} / n\right) \quad(\gamma>0)$.

Theorem 10. If (1) holds and

$$
\frac{1}{h} \int_{0}^{h}(f(t+u)-f(t-u)) d u=o\left(1 / \psi\left(\frac{1}{h}\right)\right), \text { as } h \rightarrow 0
$$

uniformly for all t and if $f(t)$ is of class $\phi(n)$ then the Fourier series of $f(t)$ converges at x, where $\phi(n)=O(n), \psi(n)=\log (n \theta(n) / \phi(n))$ and $\theta(n)$ are monotone increasing to infinity as $n \rightarrow \infty$.
8. R. Salem [1] proved the following theorem concerning the partial sum of Fourier series.

Theorem 11. If $f(x) \varepsilon L$ and

$$
\begin{equation*}
\frac{1}{h} \int_{0}^{n}(f(t+u)-f(t-u)) d u=O\left(1 / \log \frac{1}{h}\right) \text {, as } h \rightarrow 0 \tag{1}
\end{equation*}
$$

uniformly for all t, then

$$
\begin{equation*}
\left|s_{n}(x)\right|<g(x) \quad(n=1,2, \cdots) \tag{2}
\end{equation*}
$$

where $g(x) \varepsilon L^{\mu}(0<\mu<1)$.
Further if $f(x) \varepsilon L^{r}(r>1)$ and (1) holds then (2) is true for $g(x) \varepsilon L^{r}$, and if $f(x) \log ^{+}|f(x)| \varepsilon L$ and (1) holds, then (2) is true for $g(x) \varepsilon L$.

From the proof of R. Salem, we can see that

$$
\left|s_{n}(x)\right| \leqq A \max _{\alpha \leq x \leq \beta} \int_{\alpha}^{\beta}|f(t)| d t+O(1)
$$

from which the above theorem is deduced by the maximal theorem [6]. We shall prove the following slight generalization by the method used above.

Theorem 12. If $f(x) \varepsilon L$ and (1) holds, then

$$
\begin{equation*}
\left|s_{n}(x)\right| \leqq 16 \quad \theta(x, f)+O(1) \tag{3}
\end{equation*}
$$

where

$$
\theta(x, f)=\max _{\alpha \leq x \leq \beta}\left|\frac{1}{\beta-\alpha} \int_{\alpha}^{\beta} f(t) d t\right|
$$

Proof. We put $\phi_{x}(t)=f(x+t)-f(x-t)$ and

$$
\begin{aligned}
s_{n}(x) & =\frac{1}{\pi} \int_{0}^{\pi} \phi_{x}(t)-\frac{\sin n t}{t} d t+o(1)=\frac{1}{\pi}\left[\int_{0}^{\pi / n}+\int_{\pi / n}^{\pi}\right]+o(1) \\
& =\frac{1}{\pi}[I+J]+o(1)
\end{aligned}
$$

Then by integration by parts

$$
I=\int_{0}^{\pi / n}\left(\frac{\sin n t}{t^{2}}-\frac{n \cos n t}{t}\right) \int_{0}^{t} \phi_{x}(u) d u d t
$$

hence we have

$$
|I| \leqq 2 n \int_{0}^{\pi / n}\left|\frac{1}{t} \int_{0}^{t} \phi_{x}(u) d u\right| d t \leqq 4 n \theta(x, f) \int_{0}^{\pi / n} d t=4 \pi \cdot \theta(x, f) .
$$

Hence it is sufficient to prove that $J=O(1)+12 \pi \theta(x, f)$. As in the proof of Theorem 6 we get $J_{11}=O(1), J_{12}=o(1)$ and $J_{21}=O(1)$. Thus it remains only to show that $\left|J_{22}\right| \leqq 12 \pi \theta(x, f)$. Integrating by parts we have

$$
\begin{aligned}
J_{22}= & -\frac{\pi}{n} \int_{0}^{\pi / n} \int_{0}^{t} \phi_{x}(u+\pi / n) d u \\
& \cdot \sum_{j=1}^{n}\left(\frac{n \cos n t}{(t+2 j \pi / n)(t+(2 j-1) \pi / n)}-\frac{\sin n t(2 t+(4 j-1) \pi / n)}{(t+2 j \pi / n)^{2}(t+(2 j-1) \pi / n)^{2}}\right) d t
\end{aligned}
$$

and then

$$
\begin{aligned}
\left|J_{22}\right| & \left.\leqq \frac{\pi}{n} \sum_{j=1}^{n} \backslash \frac{n}{(2 j-1)^{2} \pi^{2} / n^{2}}-\frac{2}{(2 j-1)^{3} \pi^{3} / n^{3}}\right) \int_{0}^{\pi / n}\left|\int_{0}^{t} \phi_{x}(u+\pi / n) d u\right| d t \\
& \leqq \frac{\pi}{n} \frac{n^{3}}{\pi^{2}} \sum_{j=1}^{n}\left(\frac{1}{(2 j-1)^{2}}+\frac{2}{(2 j-1)^{3} \pi}\right) \int_{0}^{\pi / n}\left|\int_{0}^{t} \phi_{x}(u+\pi / n) d u\right| d t \\
& \leqq 6 \pi \cdot \frac{n}{\pi} \theta(x, f) \sum_{j=1}^{n}\left(\frac{1}{(2 j-1)^{2}}+\frac{2}{(2 j-1)^{3} \pi}\right) \int_{0}^{\pi / n} d t \leqq 12 \pi \theta(x, f) .
\end{aligned}
$$

Thus the result follows.
9. S. Izumi showed the author that Theorem 1 (iii) and Theorem 6 [4] are contained in his theorem [5]:

Theorem 13. If

$$
\int_{0}^{h}\left|p_{x}(u)\right| d u=o(h), \quad \text { as } h \rightarrow 0
$$

and
(1)

$$
n \int_{0}^{\pi / n} d t\left|\sum_{k=1}^{(n-1) / 2} \int_{t+2 k \pi / n}^{t+(2 k+1) \pi / n} \frac{\varphi_{x}(u)-\varphi_{x}(u-\pi / n)}{u} d u\right|=o(1)
$$

as $n \rightarrow \infty$, then the Fourier series of $f(t)$ converges at x, where $\varphi_{x}(t)=f(x+t)+f(x-t)-2 f(x)$.

For the proof it is sufficient to show that the condition (2) in Theorem 6 is implied by (1). This may be seen from the proof of Theorem 6.

References

[4] M. Satô: Uniform convergence of Fourier series. V, Proc. Japan Acad., 31 (1955).
[5] S. Izumi: Some trigonometrical series, X, Tôhoku Math. Jour., 6 (1954).
[6] A. Zygmund: Trigonometrical series, Warszawa (1936).

