No. 2] 99

24. Uniform Convergence of Fourier Series. VI

By Masako SATO
Mathematical Institute, Tokyo Metropolitan University, Tokyo
(Comm. by Z. SUETUNA, M.J.A., Feb. 13, 1956)

6. Furthermore we can improve Theorem 6, in the following
form:
Theorem 7. If

(1) [+ w—f@)du=o(ih), as k>0
for a fixed zx, ando

1 1
(2) Zof (f(t+u)—-f(t—u))du:o<1/logz>, as h—0

uniformly for all t, then the Fourier series of f(t) converges at x.
In other words the condition in Theorem 6
[nl
[ if@+w)—f@)du=o(hi)
is replaced by (1). ’
Proof. We put

sn(x)—f(@:% Of "%(t)&tmf_dwo(l):l[ / "y R

=% /m

=Ly g7+ o).

Then by integration by parts

1= [T S s
0

and hence, on account of (2), the absolute value of I is not greater

than
2n f ml )| %l{ :0<n f mdt) =0(1),

0

where @,(t)= f tgow(u)duzo(t) as n—> oo (0t<mw/n).

In order to evaluate J we now put (cf. [4])
7= [T puty B dt= g, 7,

/N

where
le‘”‘z“” = ot + 2k /n) — ot + (2k— l)wm)sin nt dt
=1 t+2km/n ’
=D/ px/m 1 1 .
Jo= 4+ (2k—1 — t dt,
= 2 f Pt +@k—Lym/ n)<t+2kw/n t+(2k—1)7r/n)sm "
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and further we divide J; into two parts as follows:
7 =S [ e o)~ e+ @l Lyn/)

4 2kmrin
" @b+ 2k [n) — ot + (2k—1)m/n) £ sin nt di
f (& + 2l n)- 2horr /0 S ]

sin nt dt

k=1

0
=Ju—J
We write
(n—=1)/2 n

n= kg - [[ﬂm[f(w +t+2km/n)—f (@ +t+ (2k—1)mw/n)]sin nt dt

+ jwl [f(@—t—2km/n)— f(x—t—(2k—1)m/n)] sin nt dt]
m=15/2 n

0
— _rn 1 2
= kS:‘l o [Ju+Jh],
then

Ti= [ " @+ 2o+ £)— F (@ + 2k — Ly /n+£)] sin né dé
+ [ TF @+ 2ot ()~ f -+ @b~ Dy -+ () simt dt
= f £/[23° (@+ 2kar/n+1t)~ f (v + 2km/n—t)] sin nt dt
_ [TTF @+ @=Ly )= f @+ @k + ymjn—1)] sin nt dt

- f "CFE+8)—f(E—1)] sinnt dt— f "CE 1) — f(E— )] sin nrds

/2N

’ /21 /N
:Zf [fE+t)— f(E—2)] sinnt dt—f [f(E+t)—f(E—t)] sin nt dt,
where0 E=x+2kmwin, +=t—m/n. By iontegration by parts and (2)
[Tt~y sinmt di= [sint [ (F(e+w)— f(e—u)) du]

/20
0

——nfmgos nt dtft(f(8+u)——f(8—u)) du

0

=0(1/n log n)+ o(n f " Ftl/f dt) =o0(1/n log n),
0

and similarly
/ "FE+t)— F(E—t)) sinnt dt =o(1/n log n).

0
Hence we have

(n—1)/2 n 1_(n-1)/2n 1 . 1 (n—1>/21 _
2 =t B )0

n logn logn =1 k
(n—-1)
and quite similarly i/z»égm Jh=0(), thus we get J,,=o0(1).
T

k=1
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On the other hand we put

_O& n [ f@t b+ 2km/n) — @+t +@2k—1)m/n) | . d
T5= 21 o [of t+ 2km/n bsinni df
= fl@—t—2kmw/n)— fle—t— 2k —1)mw/n) , .
+ J i+ 2o/ t sinnt dt]
R
= 2[07]' 12 124y

then by integration by parts and (2), we have

=/ (2kr/n) sin nt + ni? cos nt + 2kt cos nt
=— Ft dt
Jia Of ® (£ + 2horr/m)?

and hence

(n—1)/2 n —(n-l)/z n 3 /N 1 .
= Ek;'ﬁz_ = <f> »0/ O(nlogn)(nt 4tk) di

= ( n 17;; né%? (Tia_ + :;»: O(“]‘(;;T;&“k:%{) =o(1),

where F(t)= f [F@ 4w+ 2 /n) — F& 4w+ (2 — 1) /n) ] du=o(1/nlog 1)

uniformly for x and &k as n—>o (0<t<w/n). In the same way we
(n-1)/:

get 21 tn Ji=0(1), thus we have J,=o0(1).
=1 2km
Finally we shall prove J,=0(1). By Abel’s lemma

(n—1)/2 T/ N 1 _ 1
& k2=1 .O[ ik <¥+21'7r/n t+(2j—1)7r/n>
(a4 @ho— 1)) — alt + (26— 8y /) sin nt di
+ f "/"Zn( 1 1 >¢z,,(t+ 7r/n) sin nt dt

Nt + 2/ i (2 —1)m/n
=, at J. 22y
say. Then by integration by parts
. —(n—l)/2 ar /M ¢ _ _ _
o= g 7 [T e @ —tomin— gt @3y ]
.2< 7 cos Nt _ sinnt (2t+ (4 —1)m/n) )dt
=\t + 2w /n) &+ (27 —Dar/n) &+ 29m/n)? (E+ (25 —1)w/n)? ’

whence

(n-1)/2 /M N 3 3
Ju= > 7 E(ﬂf + n—,s>o< 1 )dt
k=1 N j=k\ J n logn

=o(3. LS Y=o S ),

ilogn =+ 52 logn ik
by condition (2). Furthermore, we have also by integration by parts

Jp=— %fnm[ft%e(u—f'W/n)du:l
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< ( 7 cos nt _ sinnt 2t+(45—1)m/n) )dt
=N+ 29m/n) E+ 25— 1) m/n)  (E+2jm/n)*(E+ (27 — D)m/n)?
and applying condition (1)

n 3 x/n
FAEFER KO8
nia gt

f TF@+utmin)— )] du

+ f T (@ —t— ) — f(x)]du\idt

[‘[ﬁ“ffﬂ/_"fo_‘.fo ](f(x+u) —f(w))du%dt

—-zm/m —n/n—t

éArn2fﬂm
0

=0(1),
where A is an absolute constant. Thus the theorem is proved.

7. We can prove the following theorems analogously as
Theorems 3, 4 and 5.

Theorem 8. Let 0<a<l. If
(1) f‘h('f(fv+%)—f(w))du=0(lhl), as h—0,
for a fixed z, a;)zd
1 h . / 1\¢ -
= Of (f(t+u)——f(t——u))du—-o(1/ (logt};) ) as h—0

uniformly for all t, and further nth Fourier coefficients of f(t) are
of order O(e'°¢™*In), then the Fourier series of f(t) converges at .
Theorem 9. Let a>1. If (1) holds and

;L Of " +w)—f(t—w) du=0(1/ (1og 1og%)“/\,, as h0

uniformly for all t and the nth Fourier coefficients of f(t) are of
order O(e’#¢"In), then the Fourier series of f(t) converges at x.
If a=1, then the conclusion holds when O(&"5"¢™%n) in the last
condition is replaced by O((log n)'/n) (v=>0).
Theorem 10. If (1) holds and

% / " Pt +u)— £(E—u) du:0<1/«lr<-;;~>>, as h—0

untformly for all ¢ and of f(t) is of class ¢(n) then the Fourier
sertes of f(t) converges at x, where ¢(n)=0(n), ¥(n)=1log (n(n)/H(n))
and O(n) are monotone increasing to infinity as n—> oo,

8. R. Salem [1] proved the following theorem concerning the
partial sum of Fourier series.

Theorem 11. If f(x)eL and
1 T _ _ - / l
(1) 7;Of(f(awrm ft—u)du=0(1/log ), as h>0

untformly for all t, then
(2) Is%<x)l<g(x> (’)’L:]., 2"")
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where g(x)el* (0<u<1).
Further of f(x)eLl” (r>1) and (1) holds then (2) is true for g(x)eLr,
and of f(x)log*|f(x)leL and (1) holds, then (2) is true for g(x)eL.
From the proof of R. Salem, we can see that

B
18.(0)| =4 max f |£(®) dt+OD),

a=wsp

from which the above theorem is deduced by the maximal theorem [6].
We shall prove the following slight generalization by the method
used above.

Theorem 12. If f(x)eL and (1) holds, then

(38) lsu(@)| =16 6z, f)+O(1),
where

_ 1
o f)= max Lo f Ftyd |

Proof. We put ¢,(t)=f(x+t)—f(x—¢) and
@=L [ 00T o= 1] [T [7] oy

/N

=——[I+J]+o(1).
m
Then by integration by parts
*( sinnt _ ncosnt) [*
= f ( o0 t) Of o) du dt,

hence we have
/N 1 t x/n B
FES f 5 f bal2t) du*dt_s_zlne(x, ) Of dt = 4w 0z, f).

Hence it is sufficient to prove that J=0(1)+12m 6(x, f). As in the
proof of Theorem 6 we get J,,=0(1), J,=0(1) and J,=0(). Thus

it remains only to show that |J,|<12w 6(x, f). Integrating by parts
we have

) f qux(u-i-w/n)du

7 cos nt sin nt (2t + (49 — Dmr/n) ) dt

j—Zl ((t + 2w )+ (2 —1w/n) (&4 25m/n)? (E+ (29— 1) 7/n)?
and then

Vel= »%( (25— 17;77' e (25— 12)3w3/n >fm’ft¢”(u+ m/n) du‘dt

=6r 20, f)z((zj e 1)3 ) f dt <127 6(x, f).

Thus the result follows.




104 M. Sa1d [Vol. 32,

9. 8. Izumi showed the author that Theorem 1 (iii) and Theorem
6 [4] are contained in his theorem [5]:
Theorem 13. If

f " o) | du=0(h), as k>0

and
(1) ” f Sy f O o) — P —min) g, | o1y
k=1 u

0 t+2km/n
as m—>co, then the Fourier series of f(t) converges af x, where
pt)=f(@+0)+f(@—1)—2f ().

For the proof it is sufficient to show that the condition (2) in
Theorem 6 is implied by (1). This may be seen from the proof of
Theorem 6.
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