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53. Evans-Selberg’s Theorem on Abstract Riemann Surfaces
with Positive Boundaries. I

By Zenjiro KURAMOCHI
Mathematical Institute, Osaka University
(Comm. by K. KUNUGI, M.J.A., April 12, 1956)

Let R* be a Riemann surface with a positive boundary and let
{R.} (n=0,1,2,--.)be its exhaustion with compact relative boundaries
{oR,}. Put R=R*—R,. Let N(z,p) be a positive function in R harmonic
in R except one point p ¢ R such that N(z, p)=0 on 9R,, N(z, p)+ log
|¢—p] is harmonic in a neighbourhood of p and the =-Dirichlet inte-
gral taken over K is minimal, where the =*-Dirichlet integral is taken
with respect to N(z, p)+log|z—p| in a neighbourhood of p. It is

easily seen that such N(z, p) is uniquely determined and f QNWS:’ D) gs
n
9R,

0
=2m. As in the case when R* is a Riemann surface with a null-
boundary, we define the ideal boundary point, by making use of
N(z, p), that is, if {p,} is a sequence of points in R having no
accumulation point in R+ 9R,, for which the corresponding functions
Nz, p,) (1=1,2,-..) converge uniformly in every compact set of R,
we say that {p;} is a fundamental sequence. Two fundamental
sequences are equivalent, if and only if, their corresponding sequences
of functions have the same limit function. The equivalent sequences
are made to correspond to an ideal boundary point. The set of all
the ideal boundary points will be denoted by B and the set B+ B, by
R. The domain of definition of N(2, ) may now be extended by
writing N(z, p)=lim Nz, p;) (2 € R, p € B), where {p;} is any funda-

mental sequence. For p in B, the flux of N(z, p) along OF, is also
2w. The distance between two points p, and p, of R is defined by
8py p)= sup | M@ P) NG D)

7531*R017E+N<z, pl)i 1+N(z’ pz) '
The topology induced by this metric is homeomorphic to the

original topology in R and we see easily that R—R,+9R,+B and B
are closed and compact.

At first, we have the following

Lemma 1. Put N"(z,p)=min[ M, N(z,p)]. Then the Dirichlet
integral of N™(z, p) over R satisfies

D(N"(z, p))<2mrM, M=0,
for every point of R.
In what follows, in order to introduce the harmonicity or super-

harmonicity in B (not only in R), we make some preparations as
follows.
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1. Capacity and the Equilibrium Potential of Relatively Closed
Sets in R.

Let F' be a compact or non compact relatively closed set in R
having no common point with R,. Denote by w,(?) a harmonic fune-
tion in R,—R,—F such that «.()=0 on SR, w.(2?)=1 on F' except

possibly a subset of F' of capacity zero and ?“8”;5@ =0 on oR,—F.
Then it is proved that w.(?) converges to wr(2) in mean. wx(z) and
the Dirichlet integral D(wx(2))= f Swr (z> \*/ ds are called the equilibrium

potential and the capacity of F' respectlvely We have the following
Theorem 1. 1) If F4F, then or (2)10r(z) and Cap(Fy,)1 Cap(F).
2) Let G, be the domain G,.=E[z2¢ R: op(z)>1—c] and let ws(?)
be the equilibrium potential of G.. Then
o) = (1—E)wo (2),
where ¢ s a positive number such that 0=ec=1.
8) Let oG, be the niveau curve of w#(2) with height 1—e. Then
there ewists a set H im the interval [0,1] such that mes H=0 and

_ ) ’(z) . awﬁr(Z)
Cap(F)= | 2% ds= | ZU% (s
'aCo on -/; - on

Jor 1—¢ ¢ H.
In the present paper, we consider only positive continuous funec-
tion U(z) such that U(R)=0 on oR, and D(U*"(2))< < for every M,
where U™(z)=min[ M, U(z)].
2. Regular Domains. Let F be a compact or non compact

domain in R and let wx(2) be its equilibrium potential. If f () ds

F
= [ a‘”’;(z) ds, F'is called a regular domain. We see at once by 3)
ﬁR

of Theorem 1 that there exists a sequence of regular domains G,
=K[z ¢ R: wp(z)==1—c¢] which we call the regular domains generated
by the equilibrium potential, containing F of capacity positive and
that any compact closed domain with analytic relative boundaries is
always regular.

Suppose a continuous function U(z) in R such that U(z)=0 on
oR,, D(U"(z))< < and a regular domain D. Let U%(2) be a harmonic
function in R—D such that U3'(z)=U"(z) on oR,+9D and UJ(z) has
the minimal Dirichlet integral over R—D. Then evidently, Uj ()
is determined uniquely. Put.UD(z):gm U?(z). On the other hand,

let N”(z,p) be a function in R—D such that N”(z, p) is harmonic
in R—D except p where N?(z, p)+log |2—p| is harmonic, N”(z, p)=
on OR,+9oD and N”(z, p) has the minimal *-Dirichlet integral, where

it is taken with respect to N?”(z, p)+log |z—p| in a neighbourhood of
p. Then we have the following

D
Theorem 2. U,,(p)_—_,él; {; UGR) 8Na éz, D) gs.
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8. Harmonicity and Superharmonicity in R. For any compact
or non compact regular domain D, if UR)=Uy(z) or =Uy(z), we
say that U(z) is harmonic or superharmonic in R respectively. Then
we have the following

Theorem 3. N(z,p) is superharmonic in R, more generally f N

(2, a)du(p,) is superharmonic in R, where u=0.
Let U(z) be a positive harmonic function in R and superharmonic

in R vanishing on oOR, and let D be a relatively closed set in R of
capacity positive. If D is regular, we define Up(2) as in Theorem 2
and if D is not regular, we define U,(z) as follows: suppose that {D,}
is a sequence of decreasing regular domains generated by the equilib-
rium potential wx(2) of D. Let Uj.(z) be a harmonie function in R—D,
such that Up\(2)=U™() on 9D,+9oR, and Uj. () has the minimal
Dirichlet integral over R—D,. Then by the superharmonicity of U"(2)
(which is easily verified as in space by the superharmonic of U(z)), we
have Uz, (:)=U"(2) and U, (U7, (2))=Uz,, () for D,D Dy, Let M
tend to «. Then we have at once U,[(Uo,,,(2))=U,,, (2). Hence
Up,(2) is decreasing as D, decreases. We define Un(z) by thp (2)-
Then we have the following

Theorem 4. If URR) and V(2) are positive, Uiz)=V()=0 on OR,
and superharmonic in E, then

1) U,(x)<UR).

2) If UR)=V(), Unz)=V,(2).

8)  Un(@)+ Vu(2)=n(U2)+ V(2)).

4) If C=0, (CUL(2))=n(CUR)).

5) For D, and D,, Uy 4p,(2)=<Up,(2)+ Up,2).

6) If DIDDg, then ])l(UDZ(z)):Upz(Z) and Up‘(Z)ZUIh(z).

7Y Let {D.} be an increasing sequence of regular domains such
that D,=E[ze¢ R: wp)=1—¢,] and D,4t D, where D,=E[z¢ R:
wp(R)=1—¢,] is also regular domain. Then Up (2)+ Up(2).

4. Integral Representation of Superkarmomc Functions in R.

Let A be a &8-closed subset of B (closed with respect to 8-metric).

Put Aﬂ,:E’l:z e R: &z, A)§%]. Then A, is a relatively closed set

and NA4,=A. Let w,(2) be the equilibrium potential of A,. Then
we see that w4 (2) converges to w4(2) in mean. w4(?) is called the equi-
librium potential of A and D(w(z))= f %‘é@ds is called capacity.

R, _
For 8-closed subset A of B, we define U,(z) by lim Us,(2), where
G.=E[z ¢ R: w,(2)=1—¢,] and lime,=0. By definition G,DA. Put
an”:A* and call A* the capacity closure of A. Then we have the

following
Theorem 5. 1) Assertions of Theorem 4 hold for U().
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?) V&)= N, p)du(o)
Sfor all points z in R. The total mass u(A*) is equal to 1 [ 00Uy
21 -~ on
?) w:@&)= [ NGz, 0)dp(p).
A
9 U= [ NG, p)p(o).
B

5. Minimal Functions. Let U®R) be @ function which is har-
monic in R and superharmonic in R. If URR)=V(z) implies V(2)=kU(z)
(k<1) for every function V(z) such that both V(z) and U(z)— V(z) are
harmonic and superharmonic in R, U(z) is called a minimal func-
tion. We shall obtain characteristics of minimal funetions.

Theorem 6. Suppose that U(z) is positive and minimal. Let A
be a S-closed set of B. If mow the following relation of the form
holds

UR)=U.(2)= f NG, p)du(p)>0, z2¢R,

then U2)= ( _a_I_J_'(z) > N(z qQ), where q 18 a point of A*.

Corollary. E’very minimal function n R is a positive multiple
of some N(z,q) (q € B).

Put A=q and define the funetion y(q) for ¢ in B as -~ f aN"(z’ ) ds.

Then we have

Theorem 7. 1) ~(q) has only two possible values 1 and 0.

2) Denoting by B, the set of points of B for which ¥(q)=0, B,
is void or an F.,.

We consider B, where B, is the set of points of which Y (q)=1.
Then

Theorem 8. 1) If U(2) is given by — f N(z, p)du(p), then Us(z)
=0 and URR)= f N(z, p)du(p) for every hcw'momc in B and superhar-

monic function U(z) in R.

2) Cap(B,)=0.
Hence every positive mass distribution on B, can be replaced by that
on B,. But the present author can not prove the uniqueness of mass
distribution. In what follows, we shall prove usefull properties of
points in B;.

Theorem 9. 1) N(z,p) s minimal or not according to p € B, or
not.
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2) Let Va(p)=E[2¢R: N, p)=m] and vﬂ(p)————E[zeE: 5z, p)
g%} Then if p is a minimal point,
Ny cox(#, D)=N(z, D)
Sfor every m less than sup Nz, p)=M’.
2ZER

2") There exists a set H in [0, M'] such that mes E=0 and that
if m¢E, then f QJ_Y(E{__@“:Z,,.’ for minimal N(z, p) or N(z, p) with

R WV m(p)
P € Lv.

2") For every V,(p), there exists a number n such that V,(p)
Dap) N R), for minimal N(z,p) or N(z,p) with p e R.

6. The Function N(z,p). Assume that p and ¢ are contained
in B. Let N,(z,p) and N,(2,q) be functions in R,—R, such that
N,.(z,p) and N,(z,q) are harmonic in R,—R, except » and ¢ re-
spectively where N,(z, p) and N,(z,q) have logarithmic singularities

and aNa(: »P) 8Na(;, q>:0 on oR,. Then we have by Green’s for-

mula N,(g, p)=N,(p,q). Since N,z, p)—>N(z, p) as n—c, we have
Ngq, p)=N(p,q) by letting n—>ow. Let {g;} be a fundamental se-
quence determining a point ge B. Then, since N(z,q, tends to
Nz,q) at every point z of R, N(p,q,)= Mg, p) implies that N(z, p)
has limit as 2 tends to q. This limit is denoted by N(g, p). Hence

if peR, N(z,p) has limit as z(¢ R) tends to ¢ with respect to
d-metric. We define the value N(z,p) at ¢ by this limit. There-

fore, if pe R, then Nz, p) is defined at every point z of R and

Nz, p) is 8-continuous, except z=p. In what follows, we shall study
the case when p e B.

Suppose that p is minimal. Then by 2) of Theorem 9 ~Jy%—@«

can be considered as the equilibrium potential of V,(p) for every m
less than sup N(z,p). Let V,(p)be regular. V,(p) may consist of
ze

at most enumerably infinite number of domains D, (k=1,2,---).
N({@,p) can not be a constant in every D,, hence there exists a
constant m, depending on D, such that D, contains some components
D’ of V,.(p). By 2) of Theorem 9 N(2,p) can be considered as the
equilibrium potential of D’ with respect to D,, that is, Nz, p)—m=0
on 9D, Niz,p)=m’—m on oD’ and N(z, p) has the minimal Dirichlet
integral taken over D,—D’. By the regularity of V,(p)

n=o0
OV mCDINC By~ R) V(D)

where N,(z, p) is harmonic in Rn—Ro——me(p) (m’ >m) N,(z, p)=0 on
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R, and Ni(z, p)=m’ on 3Vu(p) and EA_%%@—=0 on 9Ru—Vu(p). On

the other hand, by Fatou’s lemma

n=00
0DEN(Ry~Ry

Hence by (1), for every domaln D,c,
lim f ONWz, D) go— f ONG, D) 3.

n=c0 on
ADxNC Ry~ Ry) on 9Dy

Let N, ., 2) be a function in D,(R,—R,) such that N, 2)=0
on 3D, () (Ru—Ry)+3R,, E&é%z(ﬁ’_zlzo on R.ND; and Np.(C,2) is

harmonic in D, (B.—R,) except p where N, ,({, 2) has a logarithmic
singularity. Then there exists a constant L such that

LNWE, 2)—=m)=Np u(C, 2) in (De()(Bu— Rp)— V(2),
where V(z) is a suitable neighbourhood of 2. Hence
ON, (£, 2) ds— lim N, (%, 2) ds. (2)
DN (Ry— Ry on aD,anum on

We call Ny(¢,z)=HmN, ,(,2) the Green’s function of D, with pole

at z. Apply the Green’s formula to N(Z, ¢;) and Ny(&,2). Then by
(2) we have

lim

N=00

,,,,, f N, q) 2220 aN”(C 2 ds< or =N, q)
T o0y
according to ¢, € D, or not. Let t—> . Then by Fatou’s lemma

,,l_ f NG, )aND(- 2 ds<N(, q). (3)

Let N7'(2,9) be a harmomc function in D, (R.— R, such that
N.(z, )=N"(z, ) on 2D, (R.—R,) and 31_\%2@:0 on 3R.( D,

Then ; D(N?% (2, @) <27 M by Dirichlet principle. Let n—>c. Then

N7 (2, @) tends to N¥,(2, q) in every domain D, and the sum of Diri-
chlet integrals of Np4(z, ) over D, is less than 2wM. For simplicity,
we denote by Ny..,(2,q) the function being equal to N7%(z,¢q) in
every domain D,. Let V,.(p) be a regular domain such that m’>m.
Then we have by Green’s formula

N2, Q)i]\lé—z’ﬂCk‘: f Nz, @) PN@ D) go.
OV " V(0 on

By letting M—>o and by (8)

_1 oG, p) NG, )
Nows2, )= [ NGz, 0)- ds=,— [ N q) OV D) ds

W m(p) V(0

=N, Vm'cm(p, Q).



