No. 6]

92. On the Cells of Symplectic Groups

By Ichiro YOKOTA

Osaka City University, Osaka

(Comm. by K. KUNUGI, M.J.A., June 12, 1956)

- 1. Among the cellular decomposition problems of the classical Lie groups (the special orthogonal group SO(n), the special unitary group SU(n), and the symplectic group Sp(n)), a cellular decomposition of SO(n) was given by J. H. C. Whitehead¹⁾ and recently that of SU(n) was given by the author.²⁾ In this paper, we shall give a cellular decomposition of Sp(n). The details will appear in the Journal of the Institute of Polytechnics, Osaka City University.
- 2. Let Q^n be a vector space of dimension n over the field of quaternion numbers, and e_i be the element of Q^n whose i-th coordinate is 1 and whose other coordinates are 0. We embed Q^{n-1} in Q^n as a subspace whose first coordinate is 0. Let S^{4n-1} be the unit sphere in Q^n .

Let Sp(n) be the group of all symplectic linear transformations of Q^n . Put $\pi(A) = Ae_1$ for $A \in Sp(n)$. Then we have a fibre space $Sp(n)/Sp(n-1) = S^{4n-1}$ with projection $\pi: Sp(n) \to S^{4n-1}$.

3. Let E^{4n-4} be a closed cell consisting of all $x=(x_2,x_3,\dots,x_n)$, where x_2,x_3,\dots,x_n are quaternion numbers such that $|x_2|^2+|x_3|^2+\dots+|x_n|^2=1$, and let E^3 be a closed cell consisting of all pure imaginary quaternion numbers whose norms are ≤ 1 .

Now, we shall define a map $f: E^{4n-1} = E^{4n-4} \times E^3 \rightarrow Sp(n)$ by

$$f(x,q) = (\delta_{ij} + x_i p \bar{x}_j), \quad i, j = 1, 2, \dots, n,$$

where $x_1 = \sqrt{1 - (|x_1|^2 + |x_2|^2 + \cdots + |x_n|^2)}$ and $p = 2\sqrt{1 - |q|^2}(q - \sqrt{1 - |q|^2})$. It will be easily verified that f(x, q) is symplectic.

4. Define a map $\xi: E^{4n-1} \to S^{4n-1}$ by $\xi = \pi f$, then we have the Lemma. ξ maps $\mathcal{E}^{4n-1} = E^{4n-1} - (E^{4n-1})^{\bullet}$ homeomorphically onto $S^{4n-1} - e_1$ and maps $(E^{4n-1})^{\bullet}$ to a point e_1 .

From this lemma, we can see that f maps \mathcal{E}^{4k-1} homeomorphically into $Sp(k) \subset Sp(n)$ for $n \geq k \geq 1$.

5. For $n \ge k_1 > k_2 > \cdots > k_j \ge 1$, extend f to a map $f: E^{4k_1-1} \times E^{4k_2-1} \times \cdots \times E^{4k_j-1} \to Sp(n)$ by

$$\bar{f}(y_1, y_2, \cdots, y_j) = f(y_1)f(y_2)\cdots f(y_j)$$
.

¹⁾ J. H. C. Whitehead: On the groups $\pi_r(V_{n,m})$ and sphere bundles, Proc. London Math. Soc., 48 (1945).

²⁾ I. Yokota: On the cell structures of SU(n) and Sp(n), Proc. Japan Acad., **31** (1955). The results given therein are incorrect for Sp(n). The present paper is a correction for the part of Sp(n).

Put
$$\begin{cases} e^{4k_1-1,4k_2-1,\cdots,4k_j-1} = \overline{f}(\mathcal{E}^{4k_1-1} \times \mathcal{E}^{4k_2-1} \times \cdots \times \mathcal{E}^{4k_j-1}), \\ e^0 = I_{n^*}^{8} \end{cases}$$

Then we have the following results.

Theorem 1. The symplectic group Sp(n) is a cell complex composed of 2^n cells e^1 and $e^{4k_1-1,4k_2-1,\cdots,4k_j-1}$ with $n \ge k_1 > k_2 > \cdots > k_j \ge 1$. The dimension of $e^{4k_1-1,4k_2-1,\cdots,4k_j-1}$ is $(4k_1-1)+(4k_2-1)+\cdots+(4k_j-1)$.

For such a cell structure of Sp(n) given in this theorem, the boundary homomorphisms are trivial in all dimensions.

Theorem 2. Sp(n) has no torsion groups, and its Poincaré polynomial is

$$P_{Sp(n)}(t) = (1+t^3)(1+t^7)\cdots(1+t^{4n-1}).$$

6. Remark. The 7-dimensional cell e^7 is attached to the 3-dimensional cell e^3 by the Blaker-Massey's map ν (i.e. $\nu: S^6 \to S^3$ is obtained by applying Hopf construction to a map $\rho: S^3 \times S^2 = (E^4)^{\bullet} \times (E^3)^{\bullet} \to S^2 = (E^3)^{\bullet}$ such that $\rho(p,q) = pq\bar{p}$).

³⁾ I_n is the identity linear transformation of Q^n .