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89. On Closed Mappings. II

By Sitiro HANAI
Osaka University of Liberal Arts and Education
(Comm. by K. KUNUGI, M.J.A., June 12, 1956)

The present note is a continuation of our previous paper on the
closed mappings.” Let S and E be T,-spaces. A mapping from S
onto E is said to be closed if the image of every closed subset of S
is closed in E. Recently it has been shown that several topological
properties are invariant under a closed continuous mapping under
some restrictions.?

In this note, we will prove the invariance of other topological
properties under a closed continuous mapping and under the inverse
mapping of it, under some restrictions.

1. Let us recall some definitions in the following. The space
S is called paracompact (point-wise paracompact) if every open cover-
ing of S has an open locally finite (point-finite) refinement and
countably paracompact if every countable open covering has an open
locally finite refinement. The space S is said to have the star-finite
property if every open covering of S has an open star-finite refine-
ment. By an S-space, we mean a normal space with the star-finite
property according to E. G. Begle.®

Theorem 1. Let f be a closed continuous mapping from o normal
space S onto a normal space E. If the inverse image f~'(p) is com-
pact for every point p of E, then the countable paracompactness is
nvariant under f.

Proof. Since f is a closed continuous mapping, the image space
FE is normal by a theorem of G. T. Whyburn.* Let {F)} be a decreas-
ing sequence of closed sets in E with vacuous intersection. Then
{f~YF)} is a decreasing sequence of closed sets in S with vacuous
intersection since f is continuous. Since S is countably paracompact
and normal, there exists a sequence {G,} of open sets such that

ﬁ G,=¢ and fU(F)CG, (i=1,2,---).” Since fis closed and continu-
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ous, each (G;), is an open inverse set and f'(F,) (GG, and
iﬁ (G1)o=¢ where (G,), denotes the union of all f-(p) such that f~(p)
=1

CG,. Then it is obvious that Fi= £ {(G),} (i=1, 2,--+), ﬁ FUG)) =

and each f{(G,),} is open since f is a closed continuous mapping.
Hence, by C. H. Dowker’s theorem,® E is countably paracompact.
This completes the proof.

Theorem 2. Let fbe a closed continuous mapping from o normal
space S onto a normal space E such that the tnverse image f'(p) is
compact for every point p of E. If S is a locally compact S-space,
then so s E.

Proof. Since S is an S-space, S is paracompact and normal.
Hence E is paracompact and normal since f is a closed continuous
mapping such that f'(p) is compact for every point p of E.” Let
M= {M,} be an open covering of £, then M has an open locally finite
refinement N={N;}. Then W'={f"'(4V;)} is an open covering of S
since f is continuous. Since S is an S-space, N’ has an open star-
finite refinement #'={R;}. Since S is locally compact and f is a
closed continuous mapping such that f~(p) is compact for every
point p of E, E is locally compact.®

For each point p of E, we can find an open neighborhood O(p)
of p such that O(p) is compact and intersects only a finite number
of sets of M. Then &= {O(p)|p ¢ E} is an open covering of E. Since
E is paracompact, & has an open locally finite refinement &= {G,].
Then each set G is compact and intersects only a finite number of
sets of M. Since each f'(p) is compact, there exists a finite number
of sets of N’ which covers f~'(p), say {R{®'} (1=1,2,---, n(p)).

Let Gy be a set of & containing p and let {Nf?}, (=1, 2,---,
k(p)), be the set of all sets of M intersecting Gs,. Then the family

of open sets (Z B ) N f 7 Goe) N fHNGP), 5=1,2, -+, k(D)]
pe E} is evidently an open covering of S. Let R={f {(%”ng)o}
NGsry NN3?, §=1,2,-++, k(p)|p e E}, then R is an open r(;f;;ement
of M since N is an open refinement of N. Let RP=f {(gR?)’)o}
NGsn N NP, then R={EP, j=1,2,---, k(D)|p e E}.

We will next prove that % has the star-finite property.

Suppose on the contrary that there exists a set R{® which

intersects infinitely many sets of %, say (R}, ((=1,2,--+). Then
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RPNEE4¢ (=1,2,---). Hence

n(D) n(wy
() FUSEPN NG N NP N F RSN N Gaop (| N ¥ 9,
(=1,2,.-.).

Since & is an open locally finite covering and G’;cm is compact
and intersects only a finite number of %, the sequence [Ny} (=
1,2,--+) contains only a finite number of sets and G, intersects
only a finite number of sets of . Hence, from (x), we can find a
set R’ which intersects infinitely many R{*?’. This contradicts that
' is an open star-finite covering. This completes the proof.

Remark. In the above two theorems, the condition that the in-
verse image f~!(p) is compact for every point p» of E can be replaced
by that the boundary of f~'(p) is compact for every point p of E.”

2. In this section, we will deal with the case of the inverse
mapping of a closed continuous mapping.

Theorem 3. Let f be a closed continuous mapping from a normal
space S onto a mormal space E. If the inverse tmage f~'p) is
compact for every point p of E, then the countable paracompactness
18 tnvariant under the tnverse mapping of f.

Proof. As the proof of Theorem 1, we will prove this theorem
by use of C. H. Dowker’s theorem. Let {F;} (¢t=1,2,::-) be a

decreasing sequence of closed sets in S such that ;ﬁ F,=¢. Then it
=1

is easy to see that liim F'i=f] F,=¢. Then we have Iiim f(F)=é.
=00 =1 =00

In fact, let ¢ be any point of E and let « be any point of f~(q),
then we can find an open neighborhood O(x) of x which intersects
only a finite number of F; since ]zim F,=¢. If we take such O(z)

for each point x of f'(q), we have the collection {O(x)} which covers
fqg). Since f-!(q) is compact, we can find a finite subcovering

{0@)} (i=1,2,-++,7n) of {O@)]. Then (ﬁ} O()), is an open inverse
=1
set since f is a closed continuous mapping. Then f{(iﬁO(xi))o} is
=1
an open neighborhood of ¢ and intersects only a finite number of
{f(F)}. Hence qelitril sup (F;). Therefore we have Iiim f(F)=4¢.
Then we get ;ﬁ F(F)=¢ from that lim AF)=¢.
=1 = 00

Since £ is countably paracompact and normal, there exists a
sequence {H;} of open sets in E such that f(F)C H, (:=1,2,---) and
1£ﬂ H,=¢. Hence iﬂf“(Hi):c;b and F,C f '(H,) where each f '(H,)
=1 =1

is open since f is continuous. Therefore S is countably paracompact.
This completes the proof.

9) K. Morita and S. Hanai: Loc. cit.
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Theorem 4. Let f be a closed continuous mapping from o normal
space S onto a normal space E. If the inverse image f~(p) is com-
pact for every point p of E, then the paracompactness (point-wise
paracompactness) is invariont under the inverse mapping of f.

Proof. As the proof of the invariance of the point-wise para-
compactness can be carried out in the similar way as that of the
paracompactness, we will only prove the case for the paracompact-
ness in the following.

Let M= {M,} be an open covering of S. Since f'(p) is compact
for every point p of E, there exists a finite subcollection {M*}

(G=1,2,--, n(p)) of M such that f“(p)ct(Zp)Mf”’. We take such a
=1

finite subecollection {M "} of M corresponding to each point p, and
let M’ be the collection of all M™ of such {M®} (p ranging over
all points of E). Then M’ is an open refinement of M. Let M(p)

n{p)
=) M), then M(p) is an open inverse set since f is a closed
i=1

continuous mapping. Let H(p)=f{M(p)}, then H(p) is an open set
containing p. Then R={H(p)|pe E} is an open covering of E.
Since F is paracompact, &t has an open locally fihite refinement N’.
Then for each R'e¢ %', we can find a point p such that R' < H(p).

Hence f "(R’)CM(p)C(:%:)MF”)O. Then we have a collection N=

{(fFURHYNMP, i=1,2,---,n(p)| R ¢ R’} of open sets in S. It is
evident that N is an open refinement of M. We will next prove
that N is locally finite.

Let v be any point of S and let ¢g=f(x), then there exists an
open neighborhood O(q) of ¢ which intersects only a finite number of
sets of W, say (i} (1=1,2,...,1), because R’ is locally finite. Then
STHO@IN S (R)F¢ (1=1,2,---,1). By the definition of RN, we
can easily see that f~'{O(q)} intersects only a finite number of sets
of M. Hence M is locally finite. Therefore N is an open locally
finite refinement of M. This completes the proof.

Theorem 5. Let f be a closed continuous mapping from a T,\-
space S onto a Ty-space E. If the inverse image f~*(p) is compact
for every point p of E, then the star-finite property is invariont
under the inverse mapping of f.

As we can prove this theorem in the similar way as Theorem
4, we omit the proof.

Since a T;-space with the star-finite property is normal, we get
eagily the following corollary by virtue of Theorem 5.

Corollary. Let f be a closed continuous mapping from a Ty-space
S onto & T-space E such that the inverse image f(p) ts compact for
every point p of E. If E is an S-space, then so is S.



