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87. Some Strong Summability of Fourier Series. 11

By Masakiti KINUKAWA
Natural Science Division, International Christian University, Tokyo
(Comm. by Z. SUETUNA, M.J.A., June 12, 1956)

1. Let u(x) be integrable L? (p>1), periodic with period 2
and let s,(x) be the nth partial sum of its Fourier series. Then
S. Izumi [5] proved that of p=k>1, €>0 and

<fﬂ| u(w+t)—-u(x)‘ Ipdx>1/p é K{tl/k (log I/t)—<1+s)/k} ,
then the seri_es

(1.1) 31 su(@)—ul(o)

converges for almost all . Concerning the convergence of the series
(1.1), S. Izumi [4] and the author [6, 7] have gotten some related
results.

In this paper, we shall prove more general theorems concerning
the series (1.1), replacing the partial sum s,(x) by the Cesaro mean
a3(x).

2. Suppose that

S (z):i ey (z=1re"),
n=0
is an analytic function of 2z, regular for |z|=7r<1 and its boundary
function is f(e®). Then we say that’ f(z) belongs to the ‘‘ complex”’
class Lip (a, 8, p) if it satisfies
Ne( L 74 iﬂn'l/p_{_—ua( 1 —B}
o, 1= (o 17 e o) =0fa—ryreo(log -1 )L

1—7r

—av

Throughout this paper we use the following notation:
0'2»(0) = Sn(a) = é Cveive:
V=0

f]i“ i})Aﬁii s(0), for 8>-—1,

tu(0) =nc,.e™,

1 2 -
'7'2(0) = —E vz-o Afz-\l: tv(a): 8> 0,

an(0)=

where

s_(n+38 n’
A"_< n >~F(8+1)'
Then we have +5(0)=%{s3(0)—o5_,(6)} =8{s5"1(8)—o5(0)}.
Our results may now be stated as follows:
1) Cf. Hardy-Littlewood [2].
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Theorem 1. If f(z) belongs to the class Lip (a, B, ), then the
series

SHo20)—F(e) I
converges for almost all 6, where 2=p=k>1, a=1/k and B>1/k or

B>1/p+1/k according as §>1/p—1 or §=1/p—1.

Theorem 2. If f(z) belongs to the class Lip(a, B, D), then the
series

SEEOY
converges for almost all 6, where 2=p=k>1, a=1/k and B>1/k or
B>1/k+1/p according as 8>1/p or §=1/p.
Theorem 3. If f(z) belongs to the class Lip («, D), t.e. Lip (a,
0, p), then the series
= 1 o3(6)—f () ¥
n2=z n* (log n)
converges for almost all 6, where 2=p>1, p=k>0, 1=a>0, a=1—ka
and b>1 or b>1+k/p according as §>1/p—1 or §=1/p—1.
Theorem 4. If f(z) belongs to the class Lip («, D), then the series

izl 75(0) 1Fn~*(log n)™®
converges for almost all 8, where 2=p>1, p=k>0, 1=a>0, a=1—ka,

and b>1 or b>1+k/p according as §>1/p or §=1/p.

3. Let w(@) be a real integrable function, periodic with period
27, and let its Fourier series be

a2+ i (a, cos nl + b, sin nh).
n=1
If we put ¢,=a,/2, ¢,=a,—1b, (n>0), then
F@)=3 o

is regular for |z|=r<1. It can be proved that® if u(6) belongs to
the ‘““real” class Lip («, 8, p), that is,

([ 1u6-+t)—ute) ]”d@)l/p=0{t°‘(log 167,

where 0<a<1, =0 and p>1, then f(z) belongs also to the complex
class Lip (a, 8, p). So that we can easily deduce from above theorems
some analogous theorems for the real function (). Hence we need
not state those here.

4. Before preceding to prove Theorem 1, it is convenient to state
a lemma.

Lemma 1. If f(2) belongs to the class Lip (a, B, D), then

E 1/p -8

@) ([Tireen—seorae) =ofa-rr(log 1 )71,

2) Cf. Hardy-Littlewood [2, 3] and Loo [8].
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(4.2) (fﬂlf(re‘(em)"‘f(rew)lpd0>l/p:0{t(1_y)‘l+a<]og 1 )—ﬁ}’

1-r
where 1>a>0, 8=0 and p>1.
For, the left hand side of (4.1) is less than

{[7([15e1dp) a6},

which is dominated by the following, using the Minkowski inequality,

S an( f T7eenrae ) =0 ['@-pyrre(log L ) ap)

~0 {(l—r)a<log lir )_B}.

Thus we get (4.1). The left hand side of (4.2) is dominated by?®

([ oyl

-7 9

T omran) () Tl

—aT

< Kt‘/”'{ f T f " Frre) P de de}””

-z 0

< ke [Tl e ras)” <K ia-n(os 1)

which is the right side of (4.2).
We are now in pogition to prove Theorem 1. We have

io AL {on(0)— f(e)}2" =[ f(2e")— f(e*) /(1 —2)**!, (z=7€"),
=G H(t), say.
Let A=1—7r, then by the Hausdorff-Young theorem,

{gl A3[a3(6)—f(e®)]r" sin nh l”’}w'
gK{ f "\ Gt + RYH(E+ ) — Gt — RYH (t—h) |? dt}
gK{f’iH(tmw¢G(t+k)~G(t—k)|pdt+f"‘i G(t—hy 1P| H(t+h)

—HE—h)? dt}:K (J(6)+T6)), say.
First we consider the case §>1/p—1. We have, by Lemma 1,
f:}'l(e)dgéKff(l_r)2+(t_l_h)?]-p(6+1)/2dthf(7.e$(9+t+h))_f(,ret(9+t—n))lpd0

<K f A=)+ (t+h)2]‘”<5“’”{h(1~?‘)“*°‘<1°g 1L,« >“ﬁ}pdt

3) We denote by K an absolute constant, which is not necessarily the same in
different occurrences.
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7 f (1— )iy
[ +f e+ myerva |

-7

1 -10(3
(4.3) < K(1—r)l+w—w+v<log - T) ,

<Kkp(1 r)ﬁ( 1+¢)(]0g

since 1—p(8+1)<0.
We have also

f JA0)d6< f | (H(E+h)— HE—h) |? dt f | f (reo+=1) — £(%) | d6
< f | H(t+h)— HE—h) | dt| f | f (reo+=m)— £ (re) |7

£ ) —F (@) 17 d8)

<K [(1 'r)‘““<log* 'IT) ] f \t—h|P| HE+h)— HE—h) | dt

— ) 1 — )2 27— p(5+13/2
+K[(1 ) (1og 1_T> }f [(1—r) 8] dt.
The second term of the right side is less than

K(l _— /’-)1+pd‘p(5+1)<log ,,f],',; >—‘pﬁ,

and the first term is

X [(l_r)_moog,,,1,5)“’}” f "Me | Het2hy— HE) | de

—q—h

<K [(1 _ ,,.)—1+a<log . 721,%)—6:! p{ ~2:h(l — )RR g

1—
+[ [T +f Jprie e ar}

—m—n

éK[(l——r)‘“‘“(log 117. >—B]p{(1_7')‘1’(5+1)hp+1+kp+1—(6+1}p}

. 1 — B
éK(l _,,.)1 +pa—p(a+1)<log L > i
1—r

Thus we get

(4.4) f Jy0)db < K(l—r)‘“"“‘”(a“)(log = 1 ' )—Pﬁ.

Using the above estimations and taking A=1—r=m/22*", we get

f R{M;Zilﬂnw | 68(0)— £ (") |p,}z»/z»’d€§ f “[J1(0)+J2(0)]d9

< szp(tsﬂv*pa—l)l—pﬁ.
Hence
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ws) [ 5 ae-se ] a s ks,

n=2A"1+1
-7

So that we have, by the Holder inequality,
oo '3 ) L] 2A
o % — —
2/ 1a0—senpar=31 S B, st

<Sow [ S Joxe)-pnie) s,

- n=2A-14+1
where q=9'/k and ¢’=q/(g—1). Then by (4.5), the last sum is less than
Siov( [T 5 jea@—fenr " as)”
A=l a "

n=2A—14+1

é K i 2AEI/Q'+C10— Pa ~1E/D] )~k
A=1

kS ey <
A=1

A=1

Thus we get Theorem 1 for the case 8>1/p—1.
For the case 8§=1/p—1, we have, instead of (4.3) and (4.4),

7 1 —pp+1 .
f Jl(e)dﬁgK(l—r)”“Oog 1-7«> ., (i=1,2).

We can then prove the theorem for the second case, similarly as in
the proof of the first case.
5. We shall prove Theorem 2. We consider the case 8>1/p
only. We have, for this purpose,
D Ass(0)en = ROS @) ),
=1 A—2)®
Using the Hausdorff-Young theorem,

Az Py <K [T e 2| 1—ret |7 di.
posKS

But
) A0 P o eyl
[ﬂdg—“ dt=K[ﬂ A fllf(re )I»dé

| 1—re't|? 2y g2 ]Per2

gK[(l—m—w(log 1 )“T{ T—r)y e dg+ f ”t%dt}

v,

1—7r

éK[(l—r)‘”“(logT%_?)—ﬁr(l—r)““, (since 1—ps<0),

< K(l—?")_p”‘p“_“(log : 1 . )'”.

Using the above and taking 1—r==/2""!, we get
f w{ % Iri(ﬁ)l"'}m’deg K 2X0-98=1)-1
—m n=2A=1+1

which corresponds to (4.5). Hence we can prove Theorem 2, similarly
as in the proof of Theorem 1.
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6. We shall now prove Theorem 8. By the same method, we
have, for §>1/p—1,

Eid 2A /v’
f { > |02<0)—f(e‘°)l”'} do < K2r@-pa-1,
—n 1

n=2A—14

Then, by the Holder inequality,
- A
[ 5 1a@—re s

g n=2A-141
§+K2W( i 21 o%6)—f(e") I”}”’”'do)"/"

éK'z)\(l-ku).
Hence we have
S [1EOF O < x5 L[ S 1exe)-r(erlas

n=zv n° (log n)’ =1 Qe n=1=1+1

-7

éKi 27\(1~ka a A‘b:K‘i l_b< o,
A=1 A=1

since 1—ka—a=0 and b>1. Thus we get Theorem 8 for the case
8>1fp—1.
We can also prove the other cases of Theorem 8 and Theorem 4.
7. Here we shall state a corollary.
Theorem 5. Under the same assumption of Theorem 2, the series
S nte,et
18 summable |C, 8| for almost all 6, where 4<1/k.

This is the consequence of Theorem 2 and the following lemma
due to H. C. Chow [1].

Lemma 2. If 0<B<1 and {a,} is a sequence of positive numbers
such that di,=2,— A,+1=0(A,/n) and A,/n is non-increasing, and if the
series ) 4, | +5(6)|/n is convergent, then the series 3 2,c,6™ is summable
1C, B1.

In fact, we have

210t 50) |/ < (0P (1 45(0) )< o0, a.e.,
since £'(4—1)<—1. Thus we get Theorem 5.
From Theorem 4, we may also get a similar theorem.
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