131. On Natural Systems of Some Spaces

By Kiyoshi AOKI, Eiitirô HONMA, and Tetuo KANEKO Faculty of Science, Niigata University (Comm. by K. KUNUGI, M.J.A., Oct. 12, 1956)

In this note we shall give a brief account about the properties of natural systems and Postnikov's complexes. We state here only the results without proofs.¹⁾ Full details will appear in a forthcoming Journal of the Faculty of Science, Niigata University.

§1. Let X be an arcwise-connected, simply-connected topological space. We shall denote the *i*-th homotopy group $\pi_i(X, x_0)$ and the natural system of X by π_i and (π_i, k_i) respectively. Let K_i and e^r be the cell-complex of (π_i, k_i) and the unique *r*-cell of $K_1 = K(\pi_1)$ respectively.

Let \widehat{X} be the space of loops on X with x_0 as the end point. Hereafter each notation covered by $\widehat{}$ denotes the notation concerned with \widehat{X} . In particular, \widehat{e}^r is the r-dimensional matrix (d_{ij}) where d_{ij} is the unit element of $\widehat{\pi}_1$ for each i and j.

In the first place we must note that the following theorem can be proved:

Theorem 1. $\hat{\pi}_1$ operates trivially on $\hat{\pi}_n (n \ge 2)$. We now define $\rho_{r+1}: \Delta^{r+1} \to \Delta^r \times I$ by $\rho_{r+1}(y_1, y_2, \cdots, y_{r+1}) = \begin{cases} (ly_1, ly_2, \cdots, ly_{r+1}), & (y_1 + y_2 + \cdots + y_r \ge y_{r+1}), \\ (my_1, my_2, \cdots, my_{r+1}), & (y_1 + y_2 + \cdots + y_r \le y_{r+1}), \end{cases}$ where $l = \frac{y_1 + y_2 + \cdots + y_{r+1}}{y_1 + y_2 + \cdots + y_r}, m = \frac{y_1 + y_2 + \cdots + y_{r+1}}{y_{r+1}}$ and $\Delta^{r+1} = \{(y_1, y_2, \cdots, y_{r+1}):$

 $0 \leq y_i \leq 1 \quad (i=1, 2, \cdots, r+1), \quad 0 \leq y_1 + y_2 + \cdots + y_{r+1} \leq 1$ is an (r+1)-dimensional Euclidean simplex and Δ^r is the r-face $\Delta^{r+1(r+1)}$ of Δ^{r+1} contained in the hyperplane $y_{r+1} = 0$.

Let $\hat{T}^r: \varDelta^r \to \hat{X}$ be an *r*-dimensional singular simplex of \hat{X} and define $\xi_{r+1}: \varDelta^r \times I \to X$ by $\xi_{r+1}(P,s) = \hat{T}^r(P)(s)$ where $P \in \varDelta^r$ and $s \in I = [0,1]$ is the parameter of loops. Define τ by $\tau \hat{T}^r = \hat{\xi}_{r+1} \circ \rho_{r+1}: \varDelta^{r+1} \to X$. We use the same notation τ for the induced map: $[\hat{T}^r] \to [T^{r+1}]$ subject to the condition that $[\hat{T}^r]$ is an element of $\hat{\pi}_r$, where T^{r+1} is an (r+1)-dimensional singular simplex of X. It is easily seen that: 1) τ is an isomorphism of $\hat{\pi}_r$ onto π_{r+1} ,

¹⁾ In this note we quote the notations and definitions from the following report without essential modifications: P. J. Hilton: Report on three papers by M. M. Postnikov (1952).

- 2) $T^{r+1(i)} = \tau(\widehat{T}^{r(i)})$ where (i) denotes the *i*-th face,
- 3) $T^{r+1(r+1)}$ is the collapsed map.
- Define φ_{i+1*}^{r+1} , (r+1, i+1)-function over π_{i+1} , by

$$\varphi_{i+1*}^{r+1}(a_0, a_1, \cdots, a_{i+1}) = \begin{cases} \tau \Psi_i^r(a_0, a_1, \cdots, a_i), & (a_{i+1} = r+1), \\ 0, & (a_{i+1} < r+1), \end{cases}$$

where Ψ_i^r is an (r, i)-function over $\hat{\pi}_i$ and $(a_0, a_1, \dots, a_{i+1})$ is an (r+1, i+1)-sequence. And denote by α this transformation from Ψ_i^r to φ_{i+1*}^{r+1} . Let $\widehat{A}_i^r = (\Psi_i^r(i, j))$ be a matrix representation of an *r*-cell of \widehat{K}_1 , and define α on \widehat{K}_1 by $\alpha \widehat{A}_i^r = (e^{r+1}, \alpha \Psi_i^r)$. If α was defined on \widehat{K}_i , we define α on \widehat{K}_{i+1} by $\alpha \widehat{A}_{i+1}^r = (\alpha \widehat{A}_i^r, \alpha \Psi_{i+1}^r)$ where $\widehat{A}_{i+1}^r = (\widehat{A}_i^r, \Psi_{i+1}^r)$ is an *r*-cell of \widehat{K}_{i+1} . Then we see that α is an isomorphism defined on \widehat{K}_i for each *i*. By inductive method we obtain the following:

Theorem 2. Let X be an arcwise-connected, simply-connected topological space and \hat{X} be the space of loops on X. Then we can construct the natural systems of X and \hat{X} such that the following relations hold for each $i \geq 3$:

- 1) If \widehat{A}_{i-2}^{r-1} is an (r-1)-cell of \widehat{K}_{i-2} , $\alpha \widehat{A}_{i-2}^{r-1}$ is an r-cell of K_{i-1} .
- 2) $w_{i-1}(\tau \widehat{T}^r) = \alpha(\widehat{w}_{i-2}\widehat{T}^r).$

3) The normal (i-2)-dimensional singular simplex of \widehat{X} corresponding to (i-2)-cell $(\cdots((\widehat{e}^{i-2}, 0), 0) \cdots, 0)$ is the collapsed map. The normal (i-1)-dimensional singular simplex of X corresponding to (i-1)-cell $(\cdots((e^{i-1}, 0), 0) \cdots, 0)$ is the collapsed map. If \widehat{T}_N^{i-2} is the normal (i-2)-dimensional singular simplex of \widehat{X} corresponding to \widehat{A}_{i-2}^{i-2} , (i-2)-cell of \widehat{K}_{i-2} , then $\tau \widehat{T}_N^{i-2}$ is the normal (i-1)-dimensional singular simplex of \widehat{X} corresponding to \widehat{A}_{i-2}^{i-2} , (i-2)-cell of \widehat{K}_{i-2} , then $\tau \widehat{T}_N^{i-2}$ is the normal (i-1)-dimensional singular simplex of X corresponding to \widehat{A}_{i-2}^{i-2} .

4) The standard (i-1)-dimensional singular simplex of \hat{X} corresponding to (i-1)-cell $(\cdots((\hat{e}^{i-1}, 0), 0) \cdots, 0)$ is the collapsed map. The standard i-dimensional singular simplex of X corresponding to i-cell $(\cdots((e^i, 0), 0) \cdots, 0)$ is the collapsed map. If \hat{T}_{s}^{i-1} is the standard (i-1)-dimensional singular simplex of \hat{X} corresponding to \hat{A}_{i-2}^{i-1} , (i-1)-cell of \hat{K}_{i-2} , then $_{\mathcal{T}}\hat{T}_{s}^{i-1}$ is the standard i-dimensional singular simplex of \hat{X} corresponding to \hat{A}_{i-2}^{i-1} , (i-1)-cell of \hat{K}_{i-2} , then $_{\mathcal{T}}\hat{T}_{s}^{i-1}$ is the standard i-dimensional singular simplex of X corresponding to $\alpha \hat{A}_{i-2}^{i-1}$.

5) $\hat{k}_{i-2}(\cdots((\hat{e}^i, 0), 0), \cdots, 0) = 0, \quad k_{i-1}(\cdots((e^{i+1}, 0), 0), \cdots, 0) = 0, \quad \hat{k}_{i-2} = \tau^{-1} \circ k_{i-1} \circ \alpha.$

§2. Let X and Y be two arcwise-connected, simply-connected topological spaces, and let \hat{X} and \hat{Y} be the spaces of loops on X and Y respectively. We make the assumption that the natural systems $(G_i, k_i), (\hat{G}_i, \hat{k}_i), (H_i, l_i)$ and (\hat{H}_i, \hat{l}_i) of X, \hat{X}, Y and \hat{Y} have been defined

565

No. 8]

[Vol. 32,

such that they satisfy the relations given in the above Theorem 2. Let K_i , \hat{K}_i , L_i and \hat{L}_i be the cell-complexes of the above systems respectively. Assume that (G_i, k_i) and (H_i, l_i) are isomorphic, i.e., there exists, for each i, an isomorphism $\theta_i: G_i \approx H_i$ such that θ_i is a θ_1 -isomorphism if i > 1, and such that there exists for each i a θ_1 -isomorphism $\tilde{\theta}_i$ of K_i on L_i , $\tilde{\theta}_i$ being a θ_i -prolongation of $\tilde{\theta}_{i-1}$ with i-cochain d_{i-1} . By inductive method we can prove that $\tilde{\theta}_{i-1} \alpha \hat{K}_i = \alpha \hat{L}_i$. On the assumption mentioned above, we obtain the following:

Theorem 3. $(\hat{G}_i, \hat{k}_i) \approx (\hat{H}_i, \hat{l}_i)$.

Namely, putting $\eta_i = \tau^{-1} \circ \theta_{i+1} \circ \tau$, $\tilde{\eta}_i = \alpha^{-1} \circ \tilde{\theta}_{i+1} \circ \alpha$ and $\hat{d}_{i-1} = \tau^{-1} \circ d_i \circ \alpha$, we can prove that $\eta_i : \hat{G}_i \approx \hat{H}_i$ for each i, η_i is an η_1 -isomorphism if i > 1, $\tilde{\eta}_i$ is an η_1 -isomorphism of \hat{K}_i on \hat{L}_i and $\tilde{\eta}_i$ is an η_i -prolongation of $\tilde{\eta}_{i-1}$ with *i*-cochain \hat{d}_{i-1} , for each *i*. Theorem 3 can be extended in the following form:

Theorem 4. Let (G_i, k_i) , (G'_i, k'_i) , (H_i, l_i) and (H'_i, l'_i) be systems, (not necessarily being natural systems of spaces), and assume that

1) $G_1=0, H_1=0,$

2) G'_1 operates trivially on G'_i $(i \ge 2)$, H'_1 operates trivially on H'_i $(i \ge 2)$,

3) there exists an isomorphism τ such that $\tau: G'_{i-1} \approx G_i$ and $\tau: H'_{i-1} \approx H_i$ $(i \geq 2)$,

4) $k'_{i-1}=\tau^{-1}\circ k_i\circ\alpha$, $l'_{i-1}=\tau^{-1}\circ l_i\circ\alpha$ where α is the isomorphism defined in §1, $k_i(\cdots((e^{i+2}, 0), 0)\cdots, 0)=0$ and $l_i(\cdots((E^{i+2}, 0), 0)\cdots, 0)=0$ where e^{i+2} and E^{i+2} are (i+2)-dimensional matrices (d_{mn}) and (D_{mn}) respectively, being $d_{mn}=1\in G_1$, $D_{mn}=1\in H_1$ for each m and n,

5) $(G_i, k_i) \approx (H_i, l_i).$

Then we have $(G'_i, k'_i) \approx (H'_i, l'_i)$.

By making use of Theorem 4 and Postnikov's theorem² we obtain the following:

Theorem 5. Let (G'_i, k'_i) be a system such that $k'_i(\cdots((e'^{i+2}, 0), 0) \cdots, 0) = 0$. Then there exists a space of loops whose natural system is isomorphic to (G'_i, k'_i) if and only if G'_1 operates trivially on G'_i $(i \ge 2)$.

§3. Theorem 4 gives the following fibering theorem:

Theorem 6. Let (G_i, k_i) and (G'_i, k'_i) be two systems satisfying the conditions mentioned in Theorem 4. Then there exists a fibering (E,X, F,p), in the sense of Serre, such that the natural systems of the base space X and of the fiber F are isomorphic to (G_i, k_i) and (G'_i, k'_i) respectively.

This is a generalization of a fibering of J.-P. Serre.³⁾

²⁾ Theorem 3 of the report by P. J. Hilton: Loc. cit.

³⁾ J.-P. Serre: Homologie singulière des espaces fibrés, Ann. Math., **54**, 425–505 (1951).

We have, moreover, a generalization of a fibering of Cartan-Serre:⁴⁾

Let G_i and H_i be multiplicative groups of left operators on abelian groups G_i and H_i $(i \ge 2)$ respectively and assume that the following sequence is exact:

 $\rightarrow F_i \underset{f_i}{\rightarrow} G_i \underset{g_i}{\rightarrow} H_i \underset{h_i}{\rightarrow} F_{i-1} \underset{f_{i-1}}{\rightarrow} \cdots \underset{g_2}{\rightarrow} H_2 \underset{h_2}{\rightarrow} F_1 \underset{f_1}{\rightarrow} G_1 \underset{g_1}{\rightarrow} H_1 \underset{h_1}{\rightarrow} 0.$

Consider two systems (G_i, k_i) and (H_i, l_i) , and denote their cellcomplexes by K_i and L_i respectively. Assume that the following relations hold:

1) g_i is a homomorphism of G_i onto H_i $(i \ge 1)$,

2) we have $g_i(x_1x_i) = g_1(x_1)g_i(x_i)$, for all elements $x_1 \in G_1$ and $x_i \in G_i$,

3) $g_{i+1} \circ k_i = l_i \circ \overline{g}_i$, defining $\overline{g}_1 : K_1 \to L_1$ by $\overline{g}_1(d_{ij}) = (g_1(d_{ij}))$ and \overline{g}_i on K_i by $\overline{g}_i A_i^r = (\overline{g}_{i-1}A_{i-1}^r, g_i \circ \varphi_i^r)$ for each *r*-cell $A_i^r = (A_{i-1}^r, \varphi_i^r)$ of K_i inductively.

Then we see that $\overline{g}_i(K_i) \subset L_i$ $(i \ge 2)$.

After these preparations we can obtain the following theorem, by making use of Postnikov's theorem,²⁾ in the same way as the fibering of Cartan-Serre:⁴⁾

Theorem 7. On the assumptions mentioned above, there is a fibering (E, X, F, p) in the sense of Serre, such that the natural systems of the fiber space E and of the base space X are isomorphic to (G_i, k_i) and (H_i, l_i) respectively and the homotopy exact sequence of E is isomorphic to the exact sequence given above.

No. 8]

567

⁴⁾ J.-P. Serre: Cohomologie modulo 2 des complexes d'Eilenberg-MacLane, Comment. Math. Helv., 27, 198-232 (1953).