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Quite recently, some writers have considered a non-commutative
lattice which is a generalisation of the notion of lattices and have
shown that the theory of non-commutative lattices are very useful
for the theoretic physics. On the other hand, any semirings we
shall develop are considered as a extensive generalisation of a non-
commutative case for distributive lattices. In this paper, we shall
develop the ideal theory of a semiring® and consider a structure
space of a semiring.

Let R be a semiring. Unless otherwise stated, the word ideal
shall mean two-sided ideal.

Definition 1. An ideal P is prime, if and only if ABC P for
any two ideals A, B implies AC P or BCP.

Definition 2. An ideal I is drreducible, if and only if A~B=1I
for two ideals A, B implies A=1I or B=1.

Definition 8. An ideal S is strongly irreducible, if and only if
A~BCS for any two ideals 4, B implies AC S or BCS.

A notion of strongly irreducible ideals was introduced by L.
Fuchs [5] who calls primitive. In his paper [2], R. L. Blair used
a terminology strongly irreducible. We shall follow his terminology.

From ABC A~B for any two ideals A, B, any prime ideals are
strongly irreducible and any strongly irreducible ideals are irreducible.

Theorem 1. The following conditions are equivalent.

(1) P s a prime tdeal.

(2) If (&), (b) are principal tdeals® and (a)b)C P, then acP or
beP.

(8) aRbC P implies acP or be P.

(4) If I, I, are right ideals and I,I, C P, then ,C P or I,CP.
(5) If I, I, are left ideals and J.J,C P, then J,C P or J,C P.

Theorem 1 was proved by N. H. McCoy [10] for the case of
rings.

Proof. It is clear that (1) implies (2). To prove that (2) implies
(8), let aRbC P, then RaRbRC P, and hence we have (a)b)*C P.
This implies acP or belP.

To prove that (3) 1mphes (4), let LI, C P for right ideals I, I

1) For the detall of a semmng, see K Isékl and Y Mlyanaga [8]
2) (a) denotes the principal two-sided ideal generated by a.
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and suppose I; &€ P. There is an element a of I, not in P. Then,
for every element b of I,

aRbC I,-I,C P.
Hence, from (8), be P and this shows I,CC P. Similarly, we can prove
that (8) implies (5). It is trivial that (4) or (5) implies (1).

Following N. H. McCoy, we shall define m-system as follows:
A subset M of R is an m-system, if and only if a,beM implies that
there is an element o of R such that axbe M.

Then we have

Corollary 1. An ideal P is prime +f and only if the set comple-
ment of P in R is an m-system.

Proof. Let P be a prime ideal, and let P’ be the set complement
of P. Suppose that axbe P’ for some a, b of P’ and every element
2 of R. By Theorem 1, (3), we have acP or be P, which is a
contradiction. Hence P’ is an m-system. Conversely, let M be an
m-system, and let axbe R—M for every element x of R. Suppose
that a,beM, then, since M is an m-system, there is an element x
such that axbe M. Hence acR—M or be R— M.

Following R. L. Blair [2], we shall define an ¢-system. A set
M of R is an ¢-system if and only if a,beM implies that (a)~O)~M
is not empty.

By an argument of Theorem 1 and Corollary 1, or the technique
of R. L. Blair [2], we can prove the following

Theorem 2. The following conditions are equivalent for an ideal S.
(1) S is a strongly trreducible ideal.

(2) (@)~B)TS implies acS or beS.
(8) The set complement of S in R is an i-system.

The following term for rings was introduced by L. Fuchs [5].

Definition 4. A semiring R is said to be arithmetic, if, for ideals
A, B and C,

A~ (B~CY=(A—B)~(A-0C).

The identity A (B~C)=(A-B)~(A—C) is equivalent to
A~(B-C)=(A~B)~(A~C). Then we have the following

Theorem 3. In any oarithmetic semiring R, an ideal of R s
wrreducible, if and only if, it ts strongly vrreducible.

Proof. Let 4, B and C be ideals of R and suppose that A~BCC.
Then, for C,=C-—A, C,=C-— B, we have

C;~Cy=(C—A)~(C~B)=C—(A~B)=C.
If C is irreducible, then C,=C or C,=C. Hence ACC or BCC.
Therefore C is a strongly irreducible ideal.

Conversely, in a semiring R any strongly irreducible ideals are
irreducible. This completes the proof.

In particular, we have the following
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Theorem 4. In a distributive lattice, an tdeal is irreducible, if
and only if, it is strongly irreducible.

By a theorem of G. Birkhoff and O. Frink [1] (see also K. Iséki
[6, 7]), we have the following

Theorem 5. In o distributive lattice, prime tideals, irreducible
1deals and strongly irreducible ideals are same.”

For any semiring R, we shall prove the following

Theorem 6. Any ideal is the intersection of all irreducible ideals
containing t.

Proof. Let A be an ideal of R, and let {A4,} be the set of all
irreducible ideals containing A. Since R is an irreducible ideal, {A4,}
is a non-empty family. Then it is clear that AC N 4.. To prove

that AD N A,, it is sufficient to show the followinga

Lemma. If a is a non-zero element of R, and A is an ideal not
containing o, then there is an trreducible ideal B contarning A but not a.

To prove Lemma, we shall use the transfinite induction or Zorn’s
lemma. Let {B,} be the set of all ideals containing A but not a.
Since the family {B,} contains A4, it is non-empty. By Zorn’s lemma,
we can find an ideal B which is maximal with respect to the condi-
tions: B contains A and B does not contain the element a. Then
the ideal B is irreducible. Suppose that B=C,~C,, then, since B
does not contain a, at least one of C,, C, does not contain a. If
C, 5 @, then, the construction of B and BCC,, we have B=C,. There-
fore B is an irreducible ideal and the proof of Lemma is complete.
This shows that Theorem 6 holds true.

Theorem ?. If any irreducible ideal of a semiring R is strongly
irreducible, then R is arithmetic.

Proof. Let A4, B and C be ideals of R. Then we have

A (B~CYCT (A~ B)~(A~0).
If I is any irreducible ideal containing A (B~C), then we have
AC I and B~CCI. By the assumption, I is strongly irreducible
and hence BC I or CC I Therefore A BC I or A~CC1I, and we
have (A~ B)~(A~C)C I. By Theorem 6, (A~ B)~(A~C)TA—(B~C).
The proof is complete.

Further, we have the following

Corollary 2. In an arithmetic semiring, any ideal is the intersec-
tion of all strongly irreducible ideals containing .

In our papers [8, 9] we considered the structure spaces M and
$ of a commutative semiring with a unit 1. In the next section,
we shall consider a structure space & of all strongly irreducible
ideals of a commutative semiring with 1.

3) For the ideal theory in distributive lattices, see A. A. Monteiro [11].
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In our previous discussion, the commutativity is not essential.
However for brief we shall assume the commutativity of B. Clearly
MCPCS. For the theory of structure spaces for narings and
Boolean algebras, see E. A. Behrens [3,4] and C. Pauc [12].

Let © be the set of all strongly irreducible ideals of R. To give
a topology o on &, we shall take o,= {S|xeS, S¢S} for every z of R
as an open base of &, First of all, we shall show the following

Theorem 8. Let U be a subset of S, then we have

A={S'| N SCS’ and S'eS}
SEN

where U is the closure of A by o.

Proof. Let B be {S’]SgaSCS’ and S'eS} and let S’¢B. Let
o, be an open base of S’, then, by the definition of the topology o,
2eS’. Hence we have wESQmS. It follows from this that there is a
strongly irreducible ideal S of A such that x is not contained in S.
Hence 0,5S. Therefore S’e% and B .

To prove B, take a strongly irreducible ideal S’ such that
S’eB. Then ﬂ S—S8’ is not empty. For an element z of ﬂ S-S/,
we have x¢S (Se?I) and x¢S’. Hence 6,58’ and +,5 S for a]l S of

2. Therefore A ~s,=0 and then we have S’€. Hence BOA. The
proof of Theorem 8 is complete.

Now we shall prove that the topological space © for the topology
o is a compact T,-space.

To prove that & is a T,-space, it is sufficient to verify the
following conditions:

(1) A<

(2) A=

(3) AB/B=A_D.

(4) S,=8, implies S;=3S..

The conditions (1) and (2) are clear, and A—B implies A B.
From this relation, we have Yo B A_B. For some element S of
A~ B, suppose that S and S¢B. From Theorem 8, we have

SPNS=
sreY
and SPNS=
s’eB
Su and Sy are ideals. If Su~Ss(CS, by the definition of S, SuC S
or SsCS. Hence S Su~Ss=Sucs. This shows SeA_B,

To prove that S,=S, implies S,=S,, we shall use the condition

(1). Then 81 58S, and by the definition of closure operation, we have
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S;CS,. Similarly we have S; DS, and S;=S,. Therefore we com-
plete the proof that & is a T|,-space.
We shall prove that & is a compact space. Let %, be a family
of closed sets with empty intersection. Let. Ssztlzsﬂsu S, suppose that
SR

;s%#s, then there is a maximal ideal M containing the ideal
ZAJS%' Therefore we have Su, C M for every A. By the definition
of Su, Wy>M for every A. Hence (| 2,5M, which contradicts our
hypothesis of A,. Therefore ZS%:}B. Hence the unit 1 of R can
be expressed by the sum of efements a; of some Su,, (¢=1,2,--+, n):

1= éai(aiesmt). Hence we have R:é_‘,lsmi. If Z{j 2,, is non-empty,
for every strongly irreducible ideal S of f]l A, SDOSw,, ¢=1,2,---,m)
and S D@ans%" If ﬁ]l%i:R, we can prove easily that € is a compact
space. If i{i ,, contains a proper strongly irreducible ideal S, we

have SDﬁ Sw,,, which is a contradiction to R:Zn_,‘ Su,,. Therefore
i=1

=1
n

N A;,,=0. Hence © is a compact space.

i=1

Theorem 9. The structure space S with the topology o is compact
T,-space.

By the representation theory of a semiring, we shall prove the
converse of Corollary 2. It is sufficient to show that the lattice of
ideals of R is isomorphic with the lattice of some closed sets of &.
Since each ideal A is the intersection of all strongly irreducible ideals
A, containing A, the correspondence A4-— {4,} is one-to-one, and by
the definition of the topology &, the set {A,} is closed in &. Hence,
the mapping A— {A4,} gives a lattice isomorphism between the lattice
of ideals of R and a lattice of some closed sets of ©. Therefore we
have

Theorem 10. The lattice of ideals of R s distributive, if and
only if each tdeal is the intersection of all strongly irreducible tdeals
containing 2t.

In my paper [9], we introduced the notions of the M-radical
and the P-radical of a semiring. By a similar way, we shall define
S-radical of a semiring.

Definition 4. By the S-radical r(S) of a semiring, we mean
the intersection of all strongly irreducible ideals of it, i.e. ] S.

SES
From MCPC S, we have () Dr(P) Dr(S).
Theorem 11. The subset T of & s dense in S, if and only if
rP)=r(S).
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Proof. Let $=& for the topology o, then we have
{S|nNPCS1=6.
Peyp
Hence, we have
rP)= N PC ) S=r(S).
Pep SE€EG
On the other hand, () Dr(S). This shows r(&)=r(P).
Conversely, suppose that ©—%P is non-empty, then there is a

strongly irreducible ideal S such that S€P and Se¢&. Therefore
there is a neighbourhood o, of S which does not meet L. Hence
r(S)= H@S is a proper subset of (] P, and we have r(&)=r(P).

SE

pPe
Corollary 8. The subset M of % is dense in S, if and only if
(M) =r(S).
Corollary 4. Let R be a semiring with 0. If 0 s the zero ideal
(0) and R is M-semisimple, M and P are dense in S.
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