10 [Vol. 33,

3. Complex Numbers with Vanishing Power Sums

By Saburô Uchiyama

Department of Mathematics, Hokkaidô University, Sapporo, Japan (Comm. by Z. Suetuna, M.J.A., Jan. 12, 1957)

1. By $\mathfrak{Z}_{m,n}$ we denote the set of systems of n complex numbers (z_1, z_2, \dots, z_n) with the property

$$s_{\nu} \equiv \sum_{j=1}^{n} z_{j}^{\nu} = 0$$
 $(\nu = m+1, m+2, \cdots, m+n-1)$

for a prescribed non-negative integer m.

In a course of their study of the theory of Diophantine approximations Vera T. Sós and P. Turán*) were led to the problem of determining all the systems in $\Im_{m,n}$, and proved that:

- 1° the systems in $\mathfrak{Z}_{0,n}$ are given by the zeros of an equation $z^n+a=0$ (a arbitrary complex);
- 2° the systems in $\mathfrak{Z}_{1,n}$ are given by the zeros of an equation

$$z^n + \frac{a}{1!}z^{n-1} + \dots + \frac{a^n}{n!} = 0$$
 (a arbitrary complex); and

 3° the systems in $\Im_{2,n}$ are formed by the zeros of an equation

$$z^n+\frac{H_1(\lambda)}{1!}az^{n-1}+\cdots+\frac{H_n(\lambda)}{n!}a^n=0,$$

where $H_{\nu}(t)$ stands for the ν th Hermite polynomial defined by

$$H_{\nu}(t) = (-1)^{\nu} e^{t^2} \frac{d^{\nu}}{dt^{\nu}} e^{-t^2}$$

 λ denotes any zero of the equation $H_{n+1}(t)=0$ and a is an arbitrary complex number.

In the present note we wish to give a characterization of the systems in $\mathfrak{Z}_{m,n}$ for general integer values of m>0.

2. We define polynomials $C_{\nu} = C_{\nu}(t_1, \dots, t_m)$ $(\nu = 0, 1, 2, \dots)$ by (1) $\exp\left(-\sum_{\nu=1}^{m} \frac{1}{\mu} t_{\nu} x^{\nu}\right) = \sum_{\nu=0}^{\infty} \frac{C_{\nu}}{\mu} x^{\nu},$

that is, by

$$C_{
u} =
u! \sum_{\substack{\mu_1 \geq 0 \\ \mu_1 + 2\mu_2 + \dots + m\mu_m =
u}} \frac{\left(-\frac{t_1}{1}\right)^{\mu_1} \left(-\frac{t_2}{2}\right)^{\mu_2} \cdots \left(-\frac{t_m}{m}\right)^{\mu_m}}{\mu_1! \; \mu_2! \cdots \mu_m!}$$

It is well known that the Hermite polynomials $H_{\nu}(t)$ ($\nu = 0, 1, 2, \cdots$) are generated by

$$e^{2tx-x^2} = \sum_{\nu=0}^{\infty} \frac{H_{\nu}(t)}{\nu!} x^{\nu}.$$

^{*)} Vera T. Sós and P. Turán: On some new theorems in the theory of Diophantine approximations, Acta Math. Acad. Sci. Hungar., 6, 241-255 (1955).

Thus, for m=2 we have

$$C_{\nu}(-2u,2v^2) = v^{\nu}H_{\nu}\left(\frac{u}{v}\right) \qquad (
u = 0,1,2,\cdots).$$

Now, our result can be stated as follows:

Theorem. All the systems (z_1, z_2, \dots, z_n) in $\mathfrak{Z}_{m,n}$ (m>0) are formed by the zeros of an equation

$$\sum_{\nu=0}^{n} \frac{C_{\nu}(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{m})}{\nu!} z^{n-\nu} = 0,$$

where $(\lambda_1, \lambda_2, \dots, \lambda_m)$ is any solution of the system of equations $C_{\nu}(t_1, t_2, \dots, t_m) = 0$ $(\nu = n+1, n+2, \dots, n+m-1).$

We note that the value of any one of the λ_i , λ_1 say, is arbitrarily given. Clearly our theorem covers the results 2° and 3° due to Sós and Turán.

3. Put

$$\prod_{j=1}^{n} (z-z_{j}) = z^{n} + a_{1}z^{n-1} + \cdots + a_{n-1}z + a_{n}.$$

We are now going to determine the coefficients a_1, \dots, a_n under the condition

$$s_{m+1} = s_{m+2} = \cdots = s_{m+n-1} = 0.$$

There hold the recurrence formulae of Newton-Girard:

$$(3) s_{\nu} + s_{\nu-1}a_1 + s_{\nu-2}a_2 + \cdots + s_1a_{\nu-1} + \nu a_{\nu} = 0$$

for $1 \leq \nu \leq n$, and

$$(4) s_{\nu} + s_{\nu-1}a_1 + \cdots + s_{\nu-n+1}a_{n-1} + s_{\nu-n}a_n = 0$$

for $\nu > n$. It follows from this that, if s_1, s_2, \dots, s_n are given, then a_1, a_2, \dots, a_n are uniquely determined. Moreover, it is not difficult to see that

$$a_{\scriptscriptstyle{\mathcal{V}}} = \sum_{\substack{\mu_1 \geq 0 \ \mu_1 + 2\mu_2 + \cdots + n\mu_{n} = \mathcal{V}}} rac{\left(-rac{s_1}{1}
ight)^{\mu_1} \left(-rac{s_2}{2}
ight)^{\mu_2} \cdots \left(-rac{s_n}{n}
ight)^{\mu_n}}{\mu_1! \; \mu_2! \cdots \mu_n!} \qquad (1 \leq
u \leq n),$$

whence, putting $s_1=t_1$, $s_2=t_2$, \cdots , $s_m=t_m$ and using $s_{m+1}=s_{m+2}=\cdots$ = $s_{m+n-1}=0$, we thus obtain

$$a_{\nu} = \frac{1}{n!} C_{\nu}(t_1, t_2, \cdots, t_m)$$
 $(1 \leq \nu \leq n).$

Next, we shall show that these t_i 's must satisfy the relations $C_{n+k}(t_1, t_2, \dots, t_m) = 0$ $(\kappa = 1, 2, \dots, m-1)$.

By differentiation with respect to x we get from (1)

$$-\sum_{\mu=1}^{m} t_{\mu} x^{\mu-1} \sum_{\nu=0}^{\infty} \frac{C_{\nu}}{\nu!} x^{\nu} = \sum_{\nu=0}^{\infty} \frac{C_{\nu+1}}{\nu!} x^{\nu}.$$

Put $m_{\kappa} = \min(m, n+\kappa)$ for $1 \le \kappa \le m-1$. The comparison of the coefficients of x^n on both sides of (5) gives

$$\frac{C_{n+1}}{n!} = -\left(t_1 \frac{C_n}{n!} + \dots + t_{m_1} \frac{C_{n+m_1-1}}{(n+m_1-1)!}\right)$$

$$= -(t_1 a_n + \dots + t_{m_1} a_{n+m_1-1} + \dots + s_n a_1 + s_{n+1})$$

= 0.

by (2) and (4). Thus $C_{n+1}=0$. Now suppose that $C_{n+1}=\cdots=C_{n+\kappa-1}=0$. Again, by the comparison of the coefficients of $x^{n+\kappa-1}$ on both sides of (5) and using (4) we find that

$$\frac{C_{n+\kappa}}{(n+\kappa-1)!} = -\left(t_1 \frac{C_{n+\kappa-1}}{(n+\kappa-1)!} + \dots + t_{m_{\kappa}} \frac{C_{n+m_{\kappa}-\kappa}}{(n+m_{\kappa}-\kappa)!}\right) \\
= -(t_{\kappa}a_n + \dots + t_{m_{\kappa}}a_{n+m_{\kappa}-\kappa} + \dots + s_{n+\kappa-1}a_1 + s_{n+\kappa}) \\
= 0$$

whence $C_{n+\kappa}=0$, and our assertion is proved by induction.

Conversely, let z_1, z_2, \dots, z_n be the zeros of an equation of the type described in the theorem. Then, by a similar argument as above, we can show that the system (z_1, z_2, \dots, z_n) satisfies the relation (2), using (3), (4) and (5). This concludes the proof of our theorem.