26. The Initial Value Problem for Linear Partial Differential Equations with Variable Coefficients. II

By Taira Shirota

(Comm. by K. KUNUGI, M.J.A., Feb. 12, 1957)

In the present note we give another simple proof of Theorem 2 in Paper I using the duality of Hilbert space defined over $R_t^1 \times R_x^i$. This idea owes to Prof. M. Nagumo who develops our theorem in an abstract form,¹⁾ but it seems good to me to refine his postulate.

Let $A\left(t, x, \frac{\partial}{\partial x}\right)$ be an (m, m)-smooth system defined on $R_t^1 \times R_x^i$ and let $B\left(t, x, \frac{\partial}{\partial x}\right)$ be an other (m, m)-smooth system which is uniformly strongly elliptic with sufficiently large $s = \{s(i) \mid i=1, 2, \cdots, m\}$ for any $t \in R_t^1$.

Lemma 1. For sufficiently large integers s' and s'' let $\mathfrak{D}_t^{(s')}(H_x^{(s'')})$ be a space of all s'-time differentiable vector valued functions on R_t^1 into $H_x^{(s'')\,2}$ with compact carriers. Then for some integer k(s'') the differential operator $B(t, x, \frac{\partial}{\partial x}) + B(t, x, \frac{\partial}{\partial x})^* + k(s'')$ has the inverse from $\mathfrak{D}_{t,x}$ into $\mathfrak{D}_t^{(s')}(H_x^{(s'')})$.

From Lemma 1 and Sobolev's lemma $(B+B^*+k(s''))^{-1}(\mathfrak{D}_{t,x})$ is contained in the space of functions defined over $R_t^1 \times R_x^l$ with derivatives of orders s for some $s < s' \wedge s''$.

Lemma 2. Let A be semi-bounded by the norm defined by B in the strong sense, i.e.,

 $((A_t u, u))_{B_t} \leq \gamma((u, u))_{B_t} \quad for \ u \in \mathfrak{D}_x$

for some positive constant γ . Then for any $u \in \mathfrak{D}_{t,x}$ the following inequalities hold:

$$(1) \qquad \int_{-\infty}^{\infty} \left(\left(\frac{\partial}{\partial t} - \bar{A}_t \right) u_t, u_t \right) \Big|_{B_t} dt \ge \beta \int_{-\infty}^{\infty} ((u_t, u_t))_{B_t} dt$$

$$(2) \quad ||e^{\delta t}u_t||_{B_t} \leq ||e^{\delta t_0}u_{t_0}||_{B_{t_0}} + \left\{\int_{t_0}^t \left|\left|e^{\delta \tau}\left(\frac{\partial}{\partial \tau} - \bar{A}_{\tau}\right)u_{\tau}\right|\right|_{B_{\tau}} d\tau\right\} \quad for \ t > t_0$$

where $\overline{A} = A - \alpha$, α , β , δ are some positive reals. The inequality (1) implies the following:

$$(3) \qquad \qquad \int_{-\infty}^{\infty} \left\| \left(\frac{\partial}{\partial t} - \bar{A} \right) u_t \right\|_{B_t}^2 dt \ge \beta^2 \int_{-\infty}^{\infty} \| u_t \|_{B_t}^2 dt$$

2) $H_x^{(s)}$ is H_s in Paper I.

¹⁾ M. Nagumo: On linear hyperbolic system of partial differential equations in the whole space, Proc. Japan Acad., **32** (1956).

T. Shirota

$$(4) \qquad \int_{-\infty}^{\infty} \left\| B_{t}^{-1} \left(\frac{\partial}{\partial t} - \overline{A} \right)^{*} B_{t} u_{t} \right\|_{B_{t}}^{2} dt \geq \beta^{2} \int_{-\infty}^{\infty} ||u_{t}||_{B_{t}}^{2} dt$$

for any $u \in \mathfrak{D}_{t,x}$.

From Inequality (4) and Lemma 1, using the duality of Hilbert space we see the following

Lemma 3. Let $L_t^{(2)}(H_x^{(s)})$ be the space of square integrable functions on R_t^1 with values in $H_x^{(s)}$. Then for any $v \in L_t^{(2)}(H^{(s)})$ there is a $u \in L_t^{(2)}(H_x^{(s)})$ such that

$$(*) \qquad \qquad \left(\frac{\partial}{\partial t} - \vec{A}\right) u = v$$

in the sense of distributions in $R_t^1 \times R_x^l$.

Let $H_{t,x}^{(s)}$ be the Hibert space of all functions defined on $R_t^1 \times R_x^l$ with strong derivatives of orders $\leq s$. Then we see the following

Lemma 4. Let u be an element of $L_{t^{(2)}}^{(*)}(H_x^{(*)})$ and let v be an element of $H_{t,x}^{(s)}$ such that they satisfy Equation (*) in the sense of distributions. Then u has strongly derivatives of orders $\leq s'$, i.e., $u \in H_{(t,x)}^{(s')}$ where s' depends on s and the order of A.

For in the sense of distributions

$$\frac{\partial^{i_1}}{\partial x_1^{i_1}} \cdots \frac{\partial^{i_l}}{\partial x^{i_l}} \frac{\partial^n}{\partial t^n} u \quad (n+i_1+\cdots+i_l \leq s')$$

is the form of the sum of derivatives with respect to x of $\left(\frac{\partial^j}{\partial t^j}A\right)u$ and $\frac{\partial^k}{\partial t^k}v$ which are in $L_{t,x}^{(2)}$, where $\frac{\partial^j}{\partial t^j}\overline{A}$ is the differential operator such that $\left(\frac{\partial^j}{\partial t^j}\overline{A}\right)(t, x, \xi) = \frac{\partial^j}{\partial t^j}(\overline{A}(t, x, \xi)).$

Therefore by Sobolev's lemma such solution u has ordinary derivatives of orders $\leq s''$ (< s'), and thus from (2) and (3) we see the following

Lemma 5. If $A\left(t, x, \frac{\partial}{\partial x}\right)$ is semi-bounded by the norm defined by $B^{(s_1)}$ and $B^{(s_2)}$ in the strong sense such that $s_1(i)$ is sufficiently larger than $s_2(i)$ for any i $(i=1,2,\cdots,m)$. Then for any $v \in H_{t,x}^{s'}$ (s' is asufficiently large integer) there is uniquely a solution u of (*) such that $u \in H_{t,x}^{s''} > s_2(i)$ $(i=1,2,\cdots,m)$. In particular if v(t)=0 for $t \leq 0$, then u(t)=0 for $t \leq 0$.

From Lemma 5 we see Theorem 2.

Finally we remark that Theorem 2 is strengthened with respect to the condition of the coefficients of $A\left(t, x, \frac{\partial}{\partial x}\right)$ in our example given in Paper I by a limit process, and that Theorem 2 (Lemma 4, too) implies the hypoellipticity of parabolic equations in the more general sense than Petrovsky's.

104