# 112. On Operators of Schaefer Class in the Theory of Singular Integral Equations 

By Masahiro Nakamura<br>Osaka University of Liberal-Arts and Education<br>(Comm. by K. Kunugi, m.J.A., Oct. 12, 1957)

The purpose of the present brief note is to observe the theorems of H. Schaefer [4] under the method of J. W. Calkin [1] and A. F. Ruston [3].

1. Let $H$ be a separable Hilbert space. A bounded linear operator $a$ acting on $H$ will be called an operator of Schaefer class, or a $\sigma$-transformation in Schaefer's sense, if a satisfies
1) the range $R$, or $R(\alpha)$, is closed and has finite codimension,
2) the null-space $N$, or $N(\alpha)=\{\xi ; \xi \alpha=0\}$, is finite dimensional. Since $\operatorname{codim} R=\operatorname{dim} H / R=\operatorname{dim} N^{*}$, where $N^{*}$ is the null-space of the adjoint $a^{*}$ of $a, 1$ ) is equivalent to assume that the range is closed and $N^{*}$ has finite dimension.

The typical examples of operators of Schaefer class are
I. if $c$ is completely continuous, then $1-c$ is an operator of Schaefer class by the Riesz theory,
II. if $d$ is regular, i.e. $d$ has the bounded inverse $d^{-1}$, then $d$ is of Schaefer class.

The set $S$ of all operators of Schaefer class is self-adjoint in the sense that $a \in S$ implies $a^{*} \in S$ [4, Satz 1].
2. Let $B$ be the $B^{*}$-algebra of all bounded linear operators acting on $H$, and let $C$ be the ideal of $B$ consisting of all completely continuous members. The natural homomorphism of $B$ onto the quotient algebra $B / C$ will be denoted by $\#$. The aim of the present note is to show

Theorem. An operator $a$ is of Schaefer class if and only if a is regular modulo C, i.e. $a^{\#}$ has an inverse in B/C.
3. The proof of the sufficiency is contained essentially in [4, $\S 2$ Hilfssatz]. Let $a b \equiv b a \equiv 1 \bmod C$, that is, $a b=1-c$ with $c \in C$ and $b a=1-c^{\prime}$ with $c^{\prime} \in C$. By the well-known theory of Riesz, $N(a b)$ and $N^{*}(b a)$ are finite-dimensional, whence $N$ and $N^{*}$ are also. Thus it remains to show that $H a$ is closed. Again, by the Riesz theory, 1-c gives one-to-one bicontinuous (isomorphic) mapping of a (closed) subspace $F$ onto another. Therefore, $F a$ is closed and so $H a$ is closed too, since $F$ has finite-codimension.

The proof of necessity is same as that of [4, Satz 12]. By the assumption $a$ gives an isomorphism of $N^{\perp}$ onto $R$, whence the inverse $b^{\prime}$ of $a$ on $R$ exists and is bounded by a theorem of Banach. If $p$ is
a (finite-dimensional) projection on $N$, then $b=(1-p) b^{\prime}$ belongs to $B$. It is clear by the construction that $a b$ equals to $1-p$. Since $p$ belongs to $C, a b$ is congruent to 1 modulo $C$. The right-inverse will be obtained using the final remark of $\S 1$.
4. Now we are able to deduce the following theorems of Schaefer: (1) $S$ is an open semigroup in $B$ [4, Sätze $2 \& 4]$ since the regular elements of $B / C$ form an open set and $\#$ is continuous; (2) $S$ is invariant modulo $C$, i.e. $S+C \leqq S$ [4, Satz 5]; (3) if $a=x y$ belongs to $S$ then either both $x$ and $y$ belong to $S$ or both fail to belong [4, Satz $12]$ since $y^{\sharp}=x^{\sharp-1} a^{\#}$ is regular when $x^{\sharp-1}$ exists; and (4) if $x a y=1$ and $x, y \in S$ then $a \in S$, because the hypothesis and (3) imply $a y \in S$ which implies by (3) the conclusion. Finally we shall show a principal lemma of Schaefer [4, §2 Hilfssatz] which is applied by him to singular integral equations: If $a^{2}-b^{2}$ is regular, $a b=b a, s^{2}=1, s a \equiv a s \bmod C$ and $s b \equiv b s \bmod C$, then $a+b s \in S$. Using the hypothesis we have $(a+b s)$ $(a-b s) \equiv a^{2}-b^{2} \bmod C$, whence $(a+b s)(a-b s) x \equiv 1 \bmod C$ by some $x$, that is, $(a+b s)^{\#}$ has a right-inverse. Similarly, $a+b s$ has left-inverse modulo $C$. This is required.
5. Since $S$ is open, the complement $K$ of $S$ gives a spectrum $\wedge_{K}(a)$ in the sense of Halmos-Lumer [2], and $\wedge_{K}(a)$ is a compact set in the complex plane. If $a$ is hermitian then $\wedge_{K}(a)$ is the condensed spectrum in the sense of Calkin [1].

## References

[1] J.W. Calkin: Two-sided ideals and congruences in the ring of operators in Hilbert space, Ann. Math., 42, 839-873 (1941).
[2] P. R. Halmos and G. Lumer: Square roots of operators, Proc. Amer. Math. Soc., 5, 589-595 (1954).
[3] A.F. Ruston: Operators with Fredholm theory, J. London Math. Soc., 29, 318-326 (1954).
[4] H. Schaefer: Über singuläre Integralgleichungen und eine Klasse von Homomorphismen in lokalkonvexen Räumen, Math. Zeits., 66, 147-163 (1956).

