110. On Complete Orthonormal Sets in Hilbert Space

By Kiyoshi Iséki

(Comm. by K. KUNUGI, M.J.A., Oct. 12, 1957)

It is well known that a set in a separable Hilbert space^{*)} is complete, if the set is sufficiently near a complete orthonormal set under some additional conditions. Such theorems were obtained by Paley, Wiener [7], Bellman [3] and Pollard [8] in United States, and Bary [1, 2], Kostyučenko and Skorohod [6] in Soviet Russia, and Hilding [4, 5] in Sweden.

Kostyučenko and Skorohod have given a simple proof of Bary theorem: if $\{\varphi_n\}$ and $\{\psi_n\}$ are orthonormal systems in Hilbert space, and if $\sum_{n=1}^{\infty} ||\varphi_n - \psi_n|| < \infty$, then both systems are complete, if one is. S. H. Hilding [4] has shown that, if $\{\varphi_n\}$ is a complete orthonormal system and if $\sum_{n=1}^{\infty} ||\varphi_n - \psi_n|| < 1$, then $\{\psi_n\}$ is complete, and he has also obtained other two results; let $\{\varphi_n\}$ be a complete orthonormal system, and let $r_n = ||\varphi_n - \psi_n||$,

1) if
$$\|\psi_n\| = 1$$
 for $n = 1, 2, \cdots$ and if $\sum_{n=1}^{\infty} r_n^2 \left(1 - \frac{r_n^2}{4}\right) < 1$,
or

2) if
$$(\varphi_n, \psi_n) = 0$$
 and if $\sum_{n=1}^{\infty} \frac{r_n^2}{1+r_n^2} < 1$,

then $\{\psi_n\}$ is complete.

We shall prove the following

Theorem. Let $\{\varphi_n\}$ and $\{\psi_n\}$ be two orthonormal systems, let $r_n = ||\varphi_n - \psi_n||$.

1) If $\{\varphi_n\}$ is complete, $\|\psi_n\|=1$ for $n=1, 2, \cdots$ and $\sum_{n=1}^{\infty} r_n \left(1-\frac{r_n^2}{4}\right) < \infty$, then $\{\psi_n\}$ is complete.

2) if $\{\varphi_n\}$ is complete, $(\varphi_n, \varphi_n - \psi_n) = 0$ for $n = 1, 2, \cdots$, and $\sum_{n=1}^{\infty} \frac{r_n^2}{1+r_n^2} < \infty$, then $\{\psi_n\}$ is complete.

To prove Theorem, we shall use the techniques by S. H. Hilding [4], Kostyučenko and Skorohod [6]. First, we shall prove the second part of Theorem. Since the series $\sum_{n=1}^{\infty} \frac{r_n^2}{1+r_n^2}$ converges, there is an integer N such that

^{*&}gt; For fundamental concepts, see B. S_z -Nagy: Spektraldarstellung linearer Transformationen des Hilbertschen Raumes, Berlin (1942).

No. 8]

$$\sum_{n=N+1}^{\infty} \frac{r_n^2}{1+r_n^2} < 1$$

Let \mathfrak{M}_N and \mathfrak{M}'_N be the closed linear spaces generated by $\varphi_N, \varphi_{N+1}, \cdots$ and $\psi_N, \psi_{N+1}, \cdots$ respectively, and let \mathfrak{M}_N and \mathfrak{M}'_N be the orthocomplements of \mathfrak{M}_N and \mathfrak{M}'_N . The projection $P(\mathfrak{M}'_N)$ of \mathfrak{M}'_N in \mathfrak{M}_N coincides with \mathfrak{M}_N . To prove it, suppose $P(\mathfrak{M}'_N) \neq \mathfrak{M}_N$, then there is a non-zero element g such that $\mathfrak{M}_N \ni g$, $P(\mathfrak{M}'_N) \perp g$ and ||g|| = 1. Since P is a projection, $g \perp \mathfrak{M}_N$. Now, by $\mathfrak{M}_N \ni g$, $g = \sum_{n=N+1}^{\infty} (g, \varphi_n) \varphi_n$ and, for some $n \ge N+1$, by $(\varphi_n, \varphi_n - \psi_n) = 0$ $|(g, \varphi_n)|^2 = |(g, \varphi_n - \psi_n)|^2 = |\sum_{k=N+1}^{\infty} (g, \varphi_k)(\varphi_k, \varphi_n - \psi_n)|^2$

$$egin{aligned} &|\langle g, arphi_n
angle |^2 &= |\langle g, arphi_n - arphi_n
angle |^2 &= |\sum\limits_{k=N+1}^{\infty} (g, arphi_k) (arphi_k, arphi_n - arphi_n)|^2 \ &= |\sum\limits_{\substack{k=N+1\k\neq n}}^{\infty} |\langle g, arphi_k
angle | (arphi_k, arphi_n - arphi_n)|^2 \ &\leq \sum\limits_{\substack{k=N+1\k\neq n}}^{\infty} |\langle g, arphi_k
angle |^2 \sum\limits_{\substack{k=N+1\k\neq n}}^{\infty} |\langle \varphi_k, arphi_n - arphi_n
angle |^2 \ &\leq (||g||^2 - |\langle g, arphi_n
angle |^2) r_n^2. \end{aligned}$$

Therefore we have $|(g, \varphi_n)|^2 \leq \frac{r_n^2}{1+r_n^2}$. This shows $1 = ||g||^2 = \sum_{n=N+1}^{\infty} |(g, \varphi_n)|^2 \leq \sum_{n=N+1}^{\infty} \frac{r_n^2}{1+r_n^2}$ which contradicts $\sum_{n=N+1}^{\infty} \frac{r_n^2}{1+r_n^2} < 1$. Hence g is the zero-element, and we have $P(\mathfrak{M}'_N) = \mathfrak{M}_N$.

It is sufficient to prove that the projection $P(\mathfrak{N}_N)$ of \mathfrak{N}_N in \mathfrak{N}'_N coincides with \mathfrak{N}'_N , since $\{\psi_1, \dots, \psi_N\}$ spans N-dimensional space by its orthonormality.

Suppose that $P(\mathfrak{N}_N) \neq \mathfrak{N}'_N$, then there is a non-zero element g such that $g \in \mathfrak{N}'_N$ and $g \perp P(\mathfrak{N}_N)$. Therefore $g \perp \mathfrak{N}_N$, and we have $g \in \mathfrak{M}_N$. On the other hand $g \perp \mathfrak{M}'_N$. By the result of the above paragraph, the element g must be zero. Hence $P(\mathfrak{N}_N) = \mathfrak{N}'_N$, and $\{\psi_1, \dots, \psi_N\}$ spans \mathfrak{N}'_N . Therefore $\{\psi_n\}$ is complete.

For the first part, the quite similar method is available. Since the series $\sum_{n=1}^{\infty} r_n^2 \left(1 - \frac{r_n^2}{4}\right)$ is convergent, we can find an integer N such that $\sum_{n=N+1}^{\infty} r_n^2 \left(1 - \frac{r_n^2}{4}\right) < 1$. Using the same symbols, we can prove that the projection of \mathfrak{M}'_N on \mathfrak{M}_N is \mathfrak{M}_N .

If $P(\mathfrak{M}'_N) \neq \mathfrak{M}_N$, there is a non-zero element g such that $g \in \mathfrak{M}_N$, $g \perp P(\mathfrak{M}'_N)$ and ||g||=1. Then $g \perp \mathfrak{M}'_N$ and by the hypothesis, we can prove

$$|(g,\varphi_n)| \leq r_n^2 \left(1 - \frac{r_n^2}{4}\right)$$

for $N+1 \le n$ (for the detail calculation, see S. H. Hilding [4, p. 2; 5, p. 29]). Therefore $1 = ||g||^2 \le \sum_{n=N+1}^{\infty} |(g, \varphi_n)|^2 \le \sum_{n=N+1}^{\infty} r_n^2 \left(1 - \frac{r_n^2}{4}\right) < 1$ implies g=0. By the technique of the first part, we can prove the completeness of $\{\psi_n\}$. Therefore we have a proof of Theorem.

References

- N. Bary: Sur la stabilité de la propriété d'être un système complet, C. R. Acad. Sci., USSR, 37, 83-87 (1942).
- [2] N. Bary: Sur les bases dans l'espace de Hilbert, C. R. Acad. Sci., USSR, 54, 379-382 (1946).
- [3] R. Bellman: Almost orthogonal series, Bull. Amer. Math. Soc., 50, 517-519 (1944).
- [4] S. H. Hilding: On the closure of distributed complete orthogonal sets in Hilbert space, Arkiv f. Mat., Astr. Fys., 32, B(7), 1-3 (1945).
- [5] S. H. Hilding: Linear methods in the theory of complete sets in Hilbert space, Arkiv f. Mat., Astr. Fys., 35, A (38), 1-44 (1948).
- [6] Kostyučenko and Skorohod (А. Костюченко и А. Скороход): On a theorem of N. K. Bar, Progress of Mathematics (Об одной теореме Н. К. Бари, Успехи Мате. Наук), 8, 165–166 (1953).
- [7] R. E. A. C. Paley and N. Wiener: Fourier transforms in the complex domains, Am. Math. Soc. Colloq. Publ., New York, 19 (1934).
- [8] H. Pollard: Completeness theorems of Paley-Wiener type, Ann. Math., 45, 738-739 (1944).