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124. Non.Connection Methods for the Theory of Principal
Fibre Bundles as Almost Kleinean Geometries

By Tsurusaburo TAKASU
(Comm. by Z. SUETUNA, M.J.A., Nov. 12, 1957)

In some of the previous papers of the present author (T. Takasu
[8, 9), the author has established, on one hand, six non-holonomic
geometries as double geometries consisting of the respective connection
geometries and the respective non-holonomic geometries referred to
the connection parameters of the teleparallelisms (t. Cartan 1),
having discovered the most remarkable fact that the paths of the
teleparallelisms (i.e. the II-geodesic curves) behave as for meet and join
like straight lines, what has led the author to the discovery of the
actual and final formulation of the general theory of relativity as the
3-dimensional Laguerre principal fibre bundle geometry (T. Takasu 11).

S. S. Chern and C. Ehresmann (S. S. Chern 2J; C. Ehresmann
3, 4; A. Lichnerowicz 5_; K. Nomizu 6; T. Ohtsuki 7) established,
on the other hand, a theory of connections as that of the cross sections
of the (principal) fibre bundles introducing connections into them.

In this note, it will be shown firstly that the present author’s
theory of the respective principal fibre bundles (based on the II-geodesic
curves) is substantially nothing other than the respective theory in the
large of S. S. Chern or that of C. Ehresmann, since the II-geodesic
curves do actually exist in the differentiable manifolds in the sense
of them. Indeed 1. Cartan [1_ has once declared: "Les connexions
affines que j’ai introduites rentrent dans les connexions encore plus
gnrales dues M. Schouten (Math. Zeitschr., 13, 56-81 (1922)); mais
le point de vue de M. Schouten est different du mien. Pour lui le
transport parallle (lineare Ubertragung) est la notion gomtrique
essentielle; pour moi, elle n’est qu’un moyen qui tient aux propridtSs
de l’espace aine et qui ne peut plus s’utiliser, au moins directement,
pour tablir la notion d’espace connexion projective (ou conforme,
etc.)" and the present author has the same notion as . Caftan had,
for, the choice of a connection for one and the same differentiable
manifold corresponding to a Lie group means a choice of the paths
as tangents to given curves and given subvarieties.

It will also be shown secondly that the present author’s theory of
the respective principal fibre bundles based on the II-geodesic curves
provides us non-connection methods for the differentiable manifolds
admitting infinitely many connections and that the results reduce to
such an extent that the geometries under consideration become the cot-
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responding almost Kleinean geometries ("Erlanger Programm "), thus
proving to form the primary ("haupt") half o the geometries under
consideration, while the results of the classical connections form the
secondary (" neben") half.

For shortness’ sake, the case of the Euclidean principal fibre bundle
will be treated. But the general procedure is, mutatis mutandis,
common to the affine connection, the Weyl’s equiform connection, the
Veblen’s non-Euclidean connection (0. Veblen [12), the MSbius con-
nection (T. Ohtsuki _7), the projective connection (T. Ohtsuki [7),
the Lguerre connection (T. Takasu [9, 10), the Lie connection (T.
Takasu [9), and the parabolic Lie connection (T. Takasu [9).

In the Euclidean principal fibre bundle geometry, the Lie group
reduces to an orthogonal transformation group with position functions
as coecients, when II-geodesic analogues to the rectangular Cartesian
coordinates are adopted. The
II-geodesic geodesic
curves are the solutions of the extremal problem s=0 in the

Euclidean principal fibre bundle Riemannian
geometry. Trigonometry and Hesse’s normal form for II-geodesic (n--l)-
flat V- are introduced.

Considerable contributions for algebraic geometry, topology and
function theory of many variables are expected.

1. Differentiable manifolds. ,See T. Takasu 9, Art. 1].
2. IIoGeodesic curves. Adopting hypereomplex units 7 such that

(2.1) 7/q-77--28, (1, m, n,...--1, 2,..., n),
we put
(2.2) dS--7o, o-o(x)dx, (, t,... 1, 2,..., n),
where it is assumed that
(2.3) io[ # 0.
Then we have
(2.4) dSdS:ds:o%=gdxdx, ds:[ dS[,
(2.5) g--g2+g, g2--oo--g+/-, g--7%,,,/----g,
(2.6) g--oo, g--Y29,

where
(2.7) t2zJ z z

Since the are written in invariant forms, they are g[obcd in
U considered in Art. 1.

The Lie group consists in (i) the orthogonal transformations of
with function coefficients, under which ds2- is invariant, and

(ii) the coordinate transformations z--(z) either in one and the same
open subset U or in U U (satisfying the so-called pste con-
ditions).
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The identity

(2.8) d

is readily shown, where

(2.9) =9()=d,
(2.0) :=-- : 9.

Also later by (2.13) we shall have

(2.11)
ds

The A is known as the parameter of teleparallelism.
The solution of the extremal problem

s=0
in the principal fibre bundle (, x) in the manifold {X} is
is

d ’__= dx ,, dx dx-O.(2.12) d ds
O. +- ds ds

The left-hand side gives

(2.S) efg=a+d, (a-1),

hoe gomi of eiteee bei U= U U. We call the curves (2.18)
he II-geogeie efve (the geodesic curves of the second kind).

he finite equations (2.18) show that the II-eogeie efve behave

fo meet d oi lie tfaiht lie (el. (g.g)).
B me of the II-eogeie eve, o gieeetiable aifolg

can be mapped either into or onto the Euclidean space E’.
Illustrative example. The spherical surface is mapped by this principle into the

Euclidean plane giving rise to the so-called Mercator chart.

3. The Euclidean principal fibre bundle based on the lI-geodesic
curves. Since the II-geodesie curves are, unlike the geodesic curves,
free from singularity and exist in the large in U U, it is extremely

profitable to adopt a rectangular coordinate system () with II-geodesic

curves as axes replacing x by $t. Then the formula d$-(x)dx
becomes

(3.1) d= a($ $,

both ($) and (t) being II-geodesic rectangular coordinates, where the
matrix (a($)) is an orthogonal one satisfying C+n conditions.

The integral of (3.1) becomes

which is of the form
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(3.3) St a( +a(e),
the a() being determined bya($ ) except the additive constants.
The essential number of parameters a is n--1/2n(n+l)---1/2n(n--1).
The manifold (a($),a0($)) makes the Lie group, to which the (i)
and the (ii) of Art. 2 reduce. Both sides of (2.8) a (2.10) collie.

Our principal fibre bundle consists of the differentiable manifold
() together with the Lie group (a($), a($)); its dimension is n C
--n+n=n(n+l). The ds is an invariant under the Lie group.

Thus our global differential geometry of the principal fibre bugle
based on the II-geodesic curves is nothing other than that of S. S. Chern
and C. Ehresmann, provided that after E. Cartan (cf. Introduction) the
connections are considered to be mere means (" moyen").

4. The equations of structure. The equations of structure (cf.
T. Takasu [9])

Global: Local:.T9A,d--AO--T A, dgX-9A0-
(4.) ?_,0A0, A
reduce to

(4.2) d-0

owing to

00, T =0, R.=0, 00, T0, R.0,
when the II-geodesic rectangular coordinates ($) are adopted in place
of (x). The condition (4.2) turns out into

(4.3) A dx dX-o. A
ds ds--0.ds ds

Consequently we have

(4.4) d Z__dxZ dx dx_o d
d d-- ds A ds ds ds d=d--"--O,

both sides of (4.1), (4.2), (4.3) and (4.4) coinciding. Thus the II-geodesic
curves (2.12) arise also as special ones of the paths (4.4), a the
equations of structure turn out into those of the II-geodesic curves.. Trigonometr and polar coordinates. Introduce a new

p

system (e) of hypercomplex units such that

(5.) e=,, (e-l), (p, q, s,...

where (%) is the conjugate set of the hypercomplex units (7)of (2.1).
We define the generalized n-metric cosines C(O) by the formulas

(5.2) e, ’-C(O)e, ;-q

Solving (5:2) by Cramer’s method, we obtain
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(5.3)
where

P P q p q

(5.4)

As for the meaning of 0, see T. Takasu 13J.
We may put (cf. (2.13))

(5.5) $’= e.c(),
for,

(5.6) (e ’) e e C(e) =e e,s ,,-,
p=l p=l q q

where the p is the II-geodesic modulus. For p--l, we see that

(e c(e)) ()(C(e))

(5.7) C(0) C() 1.

Hesse’s normal form for II-geodesic (n--1)-flat V- may be intro-
duced.

6. A theory of curves with II-geodesic curves as tangents
The left-hand side of the following lines gives a theory of curves with
II-geodesic curves as tangents and coincides in form with that of the
Euclidean space E.

Global (principal fibre bundle)
6=6(s)-_d

dft d
(1= d
d

Local (Riemannian)
x=x(s)

dxZ
ds

,(’g+ l, g -0
()-

x x etc.

Frenet-Serret formulas

ds
(a-l, 2,..., n)

=-0
c--I a--1 a+l

(-1, 2,. ., n)
7. V immersed in V% The first column of the following lines

shows the theory of V immersed in V with II-geodesic curves as
tangents to V.
Global Vm,
global V
p=p(,..., ,)
g gpq--6pq

0

Global V,
local V

x=x(,..., )
g

gij--ij

{}

Local Vm,
global V

p=(u,..., um)
ggq=pq

gij

0

Local Vm,
local V

X’--X(ul,. ., Um)
g
g2

{}
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0

0

0
op

p=$p(l,. .,
=%-fqa,

(d=o}d
etc. etc.

dip di dxz d
ds B ds 6s ds

H.. d dJ H.. d dJ+ + ds ds

0

0
8x

x=(xl,..., x),

0

PB" -5
,p=,(,l,. ., ,n)

(dp--Pqdq)

Rz

R
xB

),---(XI,..., Xn)

etc.
dp

?s ds -B( dds
ds ds

etc.
6 dx ,.6 du

D6s ds 6s ds
du duJ

"at" : s ds

(Absolute curvature vector=relative curvature vector/normal curvature vector)

The mean curvature vector, umbilics, asymptotic curves, lines of
curvature, Weingarten’s equations, Gauss’ equations, Codazzi-Mainardi
equations, Gaussens Theorema egregium, fundamental theorem of V-theory, theory of harmonic integrals, etc. may similarly be examined.
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