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1. Introduction. Concerning the perturbation of the spectrum
of a self-adjoint operator, the well-known theorem of Weyl-von
Neumann states that any self-adjoint operator in a separable Hilbert
space can be changed into one wi$h a pure poin$ spectrum by the
addition of a suitable completely continuous, self-adjoint operator with
arbitrarily small Schmidt norm.

This theorem is no longer true if "Schmidt norm" is replaced by
"trace norm". This is a direct consequence of a recent result of
Kato, according to which the absolutely continuous part of the
spectrum of a self-adjoint operator is never changed by the addition

of a self-adjoint operator with finite trace norm.

There still remains a gap between these two results, for there
are plenty of classes of completely continuous operators other than
the Schmidt class and the trace class. These classes are most con-
veniently described in terms of the cross norm introduced by yon

Neumann and Schatten.) The purpose of the present note is to fill
in the gap by showing that the theorem of Weyl-von Neumann is
true for all unitarily invariant cross norms with the single exception
of the trace norm (or its equivalent). This shows at the same time
that the trace class is the only allowable class in Kato’s theorem, as
long as we are concerned with classes defined in terms of unitarily
invariant cross norms.

We give a brief exposition of the properties of cross norms
needed in the sequel.) Let (C) be a separable Hilbert space, B the
space of all bounded linear operators on (C) to ,9, S B the Schmidt
class, T S the trace class and IT the space of all operators of
finite rank. We denote by Ii t[ the ordinary norm, by !! ii. the Schmidt
norm and by !! [] the trace norm. In conformity with Schatten’s
terminology,) a norm a(X) defined on F will be called a unitarily

1) J. yon Neumann: Charakterisierung des Spektrums eines Integraloperators,
Actualitds Sci. Ind., 220, Paris (1935).

2) T. Kato" Perturbation of continuous spectra by trace class operators, Proc.
Japan Acad., 33, 260-264 (1957). Here the result is obtained in a general, not neces-
sarily separable, Hilbert space.

3) R. Schatten: A theory of cross spaces, Ann. Math. Studies, Princeton (1950).
4) Detailed results concerning unitarily invariant cross norms can be found in

Schatten’s work cited above.
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invariant cross norm, if it satisfies the following two conditions.
1) a(UXV)=a(X), for any pair of unitary operators U, V and

for any XF.
2) a(X)=l, for any projection X of rank 1.)

By virtue of the condition 1), a(X) depends only on the eigenvalues
of Xi=(X*X)/. Hence a(X) can be expressed in the following
form.6

( 1 ) a(X)=a(X*)--a(i Xl)--a x{P{

where n is the rank of X, {x,..., Xn} is the set of all positive eigen-
values of [X] (degenerate eigenvalues being repeated) and [P,..., P}
is an arbitrary set of mutually orthogonal projections of rank 1. The
following inequalities are direct consequences of the definition and (1).

O gx{g y{.

We denote by C the completion of F with respect to the norm
a. From the inequality (3) it follows that any Cauchy sequence with
respect to the norm a forms also a Cauchy sequence with respect to
the ordinary norm. Hence, for any element of C, there corresponds
an completely continuous operator in B. But the general theory of
cross norms shows that this correspondence is actually one-to-one.)

Thus we may regard C as a subspace (in general dependent on the
norm a) of B, consisting solely of completely continuous operators.
The norm on CB as a completion of F will be denoted also by

).
By virtue of (3), the unitarily invariant cross norm a is equivalent

to the trace norm on F, if and only if there exists a constant c>0
such that
( 4 ) a(X)c X][, for any Xe F.

By means of these notions we can now formulate our result in
the following form.

THEOREM. Let a be a unitarily invariant cross norm which is

defined on F and not equivalent to the trace norm. Then for any
self-adjoint operator H in @ and for any positive number e, there
exists a self-adjoint operator XeC with the following properties. 1)
a(X)e; 2) the self-adjoint operator H+X has a pure point spectrum.

5) For our purpose the condition 2) will not play any essential r61e. It will serve
only as a convenient normalization condition.

6) (X) can be also expressed in terms of a "symmetric gauge function" $

introduced by yon Neumann and Schatten. It is defined by $(xl,. ., xn, 0,...)=( P,).
For our purpose there is no essential difference between these two expressions and
in the sequel we shall use (1). for convenience.

7) See, for example, Schatten: Loc. cir., Theorem 5.6, p. 109.
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Remark 1. Evidently I] il, Ii il2 and I! I1, each of them restricted
on 1, are unitarily invariant cross norms. Since 1 is dense in S with
respect to the Schmidt norm and $ is complete, C--S when a coincides
with il i!.. Thus our theorem is an extension of Weyl-von Neumann’s
theorem. There are various unitarily invariant cross norms, for
example the p-norm ll Zll -IliXi Ii: (p>_ 1).

Remark 2. Similarly we have C----T when a coincides with ll ll.
From this and the inequality (3) it follows that in general CT. In
case when a is not equivalent to the trace norm, T is a proper subset
of C. (For, C,--T would imply that the two norms are equivalent,
according to Banach’s theorem and the inequality (3).) In this case
the topology induced by the norm a in T is strictly weaker than that
induced by the trace norm. Thus the above-mentioned assumption of
Kato) for the stability of the absolutely continuous spectrum is the
weakest one in the sense described above,s)

2. Proof of the theorem

LEMMA 1. Let be a unitarily invariant cross norm and let {Pi}
be a sequence of mutually orthogonal projections of rank 1. Then,

1) a P n--1,2,..., is a non-increasing sequence.

2) The norm is equivalent to the trace norm, if and only if

Paoo. By applying (1) to the operator X-,P and taking

{P,"’, P-, P/,’", Pn+l} as [P,..., Pn} Of (1), we have
(Pl+ +Pk-,.+ Pk/l+ -Pn/l)--(P- -Pn),

k-l,..., n+l. Hence, by making use of the triangle inequality, we
obtain

na(P_ +... +P+_)--a(nP+... +nPn+
<_r(P+. +Pn)+a(PI+ +P-+P+I)+

+a(P.+... +
=(n+l)a(P+... +Pn),

which proves 1). (4) implies that (__
This proves the necessity of the condition (5). Conversely, suppose
that (5) is true. For any Xel, let [x,..., x} be the positive eigen-
values of IX I. Then (1) gives

( 6 ) (X)--o(xkPA--...-t-xnP_+-4-xlP_+.+...
---X_Pn), k-- 1,’" ", n.

8) However it can be weakened in another direction. Roughly speaking, Kato’s
theorem holds if, for example, H>0 and XI’/H-I/eS. These results will be
published elsewhere,
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By virtue of the triangle inequality, (5) and (6) imply the existence
of a positive constant c such that

na(X)--a(xP+... --xP)+a(x.P --- ---xnPn_ ---xPn)--- -t-- a x P -- x P. -t- -- x P)

This proves the sufficiency of the condition (5).
LEMMA 2. Let the unitarily invariant cross norm be not equiv-

alent to the trace norm. Then there exists a sequence of positive
numbers e such that O, n, and

a(X)enn][ X[[, for any XeF of at most rank n.
PROOF. X is of rank rn. Let x,..., x be the positive eigen-

values of ]X and let x+--... =x--0. From (1) and (2) it follows

that

Hence the lemma is a direct consequence of Lemma 1.
Proof of the theorem. The proof can be carried out analogously

to the proof given by von Neumann in the case of the Schmidt norm.
In order to manifest the point which requires modification, we shall

partly restate his proof in slightly modified form. Let H= 2 dE(2)

be a self-adjoint operator, a fixed positive number, n a positive
integer and f a fixed element of . We set

E--E((2m--n)l/n)--E((2m--n--2)l/n), m--l,..., n
E--, g-E,f -g/[[ g ,.

(Set -0 if g-0.) We denote by P the projection on the closed
subspace determined by ,..., . As was shown by yon Neumann,
we obtain after a simple calculation,
( 7 ) ii (1 P)H ii l/n.
From this yon Neumann deduced that ][(1--P)HP]]gl/ and lim

[(1--P)HP[--O (l being fixed). In order to get similar result for
the cross norm stated in the theorem, we shall first prove the follow-
ing formula:
( 8 ) ((1--P)H, (1--P)H)--0, if m k.

As reduces H, we getH . But, for any f , Pf--(f,)
i=1

=(f,), which implies (1--P)fe. Hence (1--P)H.
From this and the mutual orthogonality of (8) follows immediately.
From (7) and (8), by making use of the Parceval’s equality, we see
that for any f ,

I! (1-P)gPf i- N( )(1-P)He -N ii ( e)(1-P)He 1
N i(f, f
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which means that I](1--P)HPi[I/n. Now we shall apply Lemma 2
and (1) to the operator (1--P)HP which is clearly of at most rank
n, then we obtain the estimate:

( 9 a((1--P)HP)--a([_(1--P)HP*)
<_en !! (1--P)HP !! <_eft.

For any fixed l, we can therefore make a((1--P)HP) and a([(1--P)HP*)
arbitrarily small by choosing sufficiently large n. Once this result is
established, the rest of the proof can be performed quite similarly
as in the proof of von Neumann. The only point to be noticed is the
following. By virtue of (9) we can construct, as yon Neumann does,
a sequence of self-adjoint operators of finite rank Y, Y,. for which,
instead of the Schmidt norm It Y il2, a(Yn) is smaller than /2 ( as
stated in the theorem). Then X= Y+... +Y, n=l,2,.., form a
Cauchy sequence with respect to the norm a. Hence X converge
to an operator XC with respect to the norm a and consequently
also with respect to the ordinary norm. Thus a’(X) <_ a(Y)+a(Y)+

_<e. The operator X thus obtained also satisfies the other require-
ment of the theorem.


