119. On Semi-continuity of Functionals. I

By Shōzō Koshi

Mathematical Institute, Hokkaidō University, Sapporo (Comm. by K. KUNUGI, M.J.A., Oct. 13, 1958)

1. Introduction. H. Nakano obtained the following decomposition theorem (cf. [3]). Let R be a universally continuous semi-ordered linear space (a conditionally complete vector lattice in Birkhoff's terminology [2]). A linear functional f on R is said to be bounded if $\sup_{x \to 0} |f(b)| < +\infty$ for every $a \in R$.

A bounded linear functional f is decomposed into two linear functionals f_1, f_2 such that

(1.1) $f = f_1 + f_2,$

 f_1 is a universally continuous linear functional ¹⁾ and f_2 is orthogonal to every universally continuous linear functional.

The structure of f_1 was fully discussed by Nakano [3]. But f_2 is not clear yet. On the other hand, he considered totally continuous spaces.²⁾

Recently I. Amemiya conjectured that if R is totally continuous, then f_2 is 0 on some complete semi-normal manifold of R. (A seminormal manifold (1-ideal in Birkhoff's terminology) $M \subset R$ is said to be complete if $|a| \cap |b| = 0$, $a \in R$ (for every $b \in M$) implies a = 0. In this case, it is proved that for any $a \in R$, there exist $a_{\lambda} \in M(\lambda \in A)$ with $a = \bigcup_{\lambda \in A} a_{\lambda}$ [3].)

The aim of this note is to prove Theorem 1 which deduces the Amemiya's conjecture as a special case. In the sequel, we will use the notations and terminologies in [3].

2. Definitions and lemmas. According to Nakano [3], R is said to be totally continuous if for any double sequence of projectors $[p_{i,j}] \uparrow_{j=1}^{\infty} [p]$, there exists a sequence of projectors $[p_k] \uparrow_{k=1}^{\infty} [p]$ and integers l(i,k) $(i,k=1,2,\cdots)$ with $[p_k] \leq [p_{i,l(i,k)}]$.

I. Amemiya proved that if the hypothesis of continuum is satisfied, then a universally continuous and totally continuous semi-ordered linear space is super-universally continuous, that is, for any system $a_{\lambda} \ge 0$ $(\lambda \in \Lambda)$, there exist countable $\lambda_i \in \Lambda$, a_{λ_i} $(i=1, 2, \cdots)$ with $\bigcap_{\lambda \in \Lambda} a_{\lambda} = \bigcap_{i=1}^{\infty} a_{\lambda_i}$ [1]. If R is super-universally continuous and totally continuous, it is proved

¹⁾ $a_{\lambda} \downarrow_{\lambda \in A} 0$ implies $\inf_{\lambda \in A} |f(a_{\lambda})| = 0.$

²⁾ The space of measurable functions on measure space which is σ -finite is an example of totally continuous space.

that, 1st category set in the proper space \in of R is always nowhere dense, i.e. countable meet of open dense sets contains an open dense set in \in (cf. [3]).

We suppose that any functional in this paper is finite real-valued. A functional m on R is said to be monotone if

(2.1) $a, b \in \mathbb{R}, |a| \leq |b| \text{ implies } m(a) \leq m(b).$

We shall use the notation $a_{\lambda} \uparrow_{\lambda \in \Lambda} a$ (or $a_{\lambda} \downarrow_{\lambda \in \Lambda} a$) to mean $a = \bigcup_{\lambda \in \Lambda} a_{\lambda}$ (or $a = \bigcap_{\lambda \in \Lambda} a_{\lambda}$) and for all $\lambda_{1}, \lambda_{2} \in \Lambda$ there exists $\lambda \in \Lambda$ with $a_{\lambda} \ge a_{\lambda_{1}} \smile a_{\lambda_{2}}$ (or $a_{\lambda} \le a_{\lambda_{1}} \frown a_{\lambda_{2}}$).

A monotone functional *m* is said to be *semi-continuous* if (2.2) $0 \leq a_{\lambda} \uparrow_{\lambda \in A} a$ implies $m(a) = \sup_{\lambda \in A} m(a_{\lambda})$.

m is said to be *additive* if

(2.3) $a \frown b = 0$ implies m(a+b) = m(a) + m(b).

m is said to be *coefficient-continuous* if

(2.4) for any sequence of numbers $0 \leq \lambda_i \uparrow_{i=1}^{\infty} \lambda$ and for any $a \in R$, we have

$$m(\lambda a) = \sup m(\lambda_i a).$$

It is clear that (2.2) implies (2.4).

Lemma 1. A monotone and coefficient-continuous functional m on a universally continuous semi-ordered linear space R is semicontinuous if and only if, for any $0 \leq p \in R$, $[p_{\lambda}] \uparrow_{\lambda \in A}[p]$ implies

$$m(p) = \sup_{\lambda \in A} m([p_{\lambda}]p)$$

Proof. We shall only prove the sufficiency. Let $0 \leq a_{\lambda} \uparrow_{\lambda \in A} a$. Putting $(a_{\lambda} - (1-\varepsilon)a)^{*} = p_{\lambda}$ ($\varepsilon > 0$), we have (2.5) $a_{\lambda} \geq [p_{\lambda}]a_{\lambda} \geq (1-\varepsilon)[p_{\lambda}]a$.

Since $p_{\lambda} \uparrow_{\lambda \in A} \varepsilon a$, we have

(2.6) $[p_{\lambda}] \uparrow_{\lambda \in A} [a].$ Because *m* is monotone, by (2.5) and (2.6), we have $\sup m(a_{\lambda}) \ge m((1-\varepsilon)a).$

Since *m* is coefficient-continuous, we have $\sup_{a \in A} m(a_a) = m(a).$

Remark. In the above lemma, if *m* is furthermore an additive functional, we can replace the statement " $[p_{\lambda}]\uparrow_{\lambda\in\Lambda}[p]$ implies $m(p) = \sup_{\lambda\in\Lambda} m([p_{\lambda}]p)$ " by " $[p_{\lambda}]\downarrow_{\lambda\in\Lambda}0$ implies $\inf_{\lambda\in\Lambda} m([p_{\lambda}]p)=0$ ".

Lemma 2. If R is super-universally continuous, a monotone functional m on R is semi-continuous if and only if for any $0 \leq p \in R$, $[p_i] \uparrow_{i=1}^{\infty} [p]$ implies $m(p) = \sup m([p_i]p)$.

Proof of this lemma is clear from Lemma 1.

3. Theorem 1. Let R be super-universally continuous and totally continuous, and let m be a functional on R which is additive, mono-

tone, and coefficient-continuous. Then m is semi-continuous on some complete semi-normal manifold of R.

Proof. For any $a \in R$, we put

 $B_a = \{b : |b| \leq \lambda_b |a| \text{ for some } \lambda_b > 0\}.$

When m is semi-continuous on B_a , we call a a semi-continuous element by m. The totality of semi-continuous elements is denoted by R_s .

(1) If $a, b \in R_s$, then a+b, $\lambda a \in R_s$.

(2) If $|a| \ge |b|$, $a \in R_s$, $b \in R$, then $b \in R_s$.

(3) m is semi-continuous on R_s .

(2) and (3) are clear, therefore we shall only prove (1).

For any number $\lambda \neq 0$, we have $B_{\lambda a} = B_a$, and so if a is a semicontinuous element by m, then λa is semi-continuous element for all numbers λ .

Let c be an element such that

 $B_{a+b} \ni c \geq 0$, $[c_{\lambda}] \uparrow_{\lambda \in A} [c]$ where $c_{\lambda} \in B_{a+b}(\lambda \in A)$.

Whithout loss of generality, we can suppose $a \ge 0$, $b \ge 0$ and $a+b \ge c \ge 0$. We put $c_1 = \lfloor (a-b)^+ \rfloor c$ and $c_2 = c - \lfloor (a-b)^+ \rfloor c$.

Since
$$[(a-b)^+]a \ge [(a-b)^+]b$$

and
 $a-[(a-b)^+]a \le b-[(a-b)^+]b$
imply
 $[(a-b)^+]c \le [(a-b)^+](a+b) \le [(a-b)^+]2a \le 2a$
and
 $c-[(a-b)^+]c \le a+b-[(a-b)^+](a+b) \le 2(b-[(a-b)^+]b) \le 2b$
respectively,

we see thus;

 $0 \leq c_1 \leq 2a$ and $0 \leq c_2 \leq 2b$, $c_1 + c_2 = c$ and $c_1 \frown c_2 = 0$,

therefore, $c_1 \in B_a$ and $c_2 \in B_b$.

Since m is semi-continuous on B_a and B_b , and additive on R, we see that

$$m(c) \geq \sup_{\substack{\lambda \in \Lambda}} m([c_{\lambda}]c) = \sup_{\substack{\lambda \in \Lambda}} (m([c_{\lambda}]c_{1}) + m([c_{\lambda}]c_{2}))$$
$$= \sup_{\substack{\lambda \in \Lambda}} m([c_{\lambda}]c_{1}) + \sup_{\substack{\lambda \in \Lambda}} m([c_{\lambda}]c_{2}) = m(c_{1}) + m(c_{2}) = m(c).$$

By Lemma 1, m is semi-continuous on B_{a+b} , this proves the first part of (1).

(1), (2), (3) show that R_s is a semi-normal manifold of R.

We shall show that R_s is complete in R. For this purpose, we shall prove that, for any a>0, $a \in R$ there exists an element b with $a \ge b>0$, $b \in R_s$.

For a positive number $\varepsilon > 0$, if we can find a sequence of pro-

No. 8]

jectors $[a] \ge [p_i]$ $(i=1, 2, \cdots)$ with $[p_i] \bigvee_{i=1}^{\infty} 0$, and $\inf_i m([p_i]a) \ge \varepsilon$, then $A_1 = U_{[a]} - \bigcap_i U_{[p_i]}$ is open dense in $U_{[a]}$, because $U_{[p_i]}$ are open and closed. Furthermore, if we can find a sequence of projectors $[a] \ge [q_i] \bigvee_{i=1}^{\infty} 0$ $(i=1, 2, \cdots)$ with

$$U_{\llbracket q_i
brace} \subset A_1 \ (i = 1, 2, \cdots), \quad ext{and} \quad \inf m(\llbracket q_i
brace a) \geq \varepsilon_1$$

then we see easily that $A_2 = A_1 - \bigcap_i U_{[a_i]}$ is open dense in $U_{[a]}$.

Since $U_{[p_i]}$, $U_{[q_i]}$ $(i, j=1, 2, \cdots)$ are compact, we can find $[p_{i_0}]$ and $[q_{j_0}]$ such that

$$U_{[p_{i_0}]} \frown U_{[q_{j_0}]} = \phi$$
,

but this is equivalent to

$$[p_{i_0}] \frown [q_{j_0}] = 0.$$

If we proceed with this method, and we can find mutually orthogonal projectors $[a] \ge [p'_i]$ $(i=1, 2, \dots, n)$ with

(4) $m([p'_i]a) \ge \varepsilon$ $(i=1, 2, \cdots, n),$ then

$$m(a) \geq m(([p'_1] + \cdots + [p'_n])a) = \sum_{i=1}^n m([p'_i]a) \geq n\varepsilon.$$

Because $m(a) < +\infty$, we can not find infinite numbers of mutually orthogonal projectors satisfying (4), i.e. we find finite numbers of open dense sets $A_1, A_2, \dots, A_n \subset U_{[a]}$ such that

 $\bigcap_{i=1}^n A_i \supset U_{\llbracket p_j \rrbracket}, \llbracket p_j \rrbracket \downarrow 0 ext{ implies } \inf_j m(\llbracket p_j \rrbracket a) \leq \varepsilon.$

For any k $(k=1, 2, \cdots)$, we can find, therefore, an open dense set $B_k \subset U_{[a]}$ such that

$$B_k \supset U_{[p_i]}$$
 $(i=1, 2, \cdots)$ and $[p_i] \downarrow_i 0$ imply $\inf_i m([p_i]a) \leq \frac{1}{k}$

Because R is super-universally and totally continuous, we find an open dense set B' in $U_{[a]}$ with $B' \subset \bigcap_{k=1}^{\infty} B_k$.

For any $[p_i]$ $(i=1, 2, \cdots)$ such that $B' \supset U_{[p_i]}$, $[p_i] \downarrow_{i=1}^{\infty} 0$, we have inf $m([p_i]a)=0$.

By the same method, for any $n=2,\cdots$, we can find an open dense set B'_n in $U_{[a]}$ such that

 $B'_n \supset U_{\lfloor p_i \rfloor}$ and $\lfloor p_i \rfloor \downarrow_{i=1}^{\infty} 0$ imply inf $m(n \lfloor p_i \rfloor a) = 0$.

Because R is super-universally and totally continuous, $\bigcap_{n} B'_{n}$ contains an open dense set B in $U_{[a]}$; therefore we can find a projector $[b'] \neq 0$ with $U_{[b']} \subset B$. Let $[p_{i}] \downarrow_{i=1}^{\infty} 0$, then $\inf_{i} m(n[p_{i}][b']a) = 0$. Hence, putting b = [b']a, we see easily $0 < b \leq a$ and $b \in R_{s}$ by the remark of Lemma 1 and Lemma 2. Hence, R_{s} is a complete semi-normal manifold of R. From the definition of R_{s} , it is clear that m is semicontinuous on R_{s} . This proves the theorem. *Proof.* Any bounded linear functional f can be written by the difference of two positive linear functionals. We prove Theorem 2 only in the case that f is positive (i.e. $a \ge 0$ implies $f(a) \ge 0$). For, if the sets $A, B \subset R$ are complete semi-normal manifolds, then $A \cap B$ is also. The functional m defined by $m(a)=f(|a|), a \in R$ is monotone, coefficient-continuous, and additive. By Theorem 1, we see easily the validity of Theorem 2.

References

- I. Amemiya: On totally continuous space (in Japanese), Functional Analysis, 2-6 (1952).
- [2] G. Birkhoff: Lattice Theory, Amer. Math. Col. (1948).
- [3] H. Nakano: Modulared Semi-ordered Linear Space, Tokyo Math. Book Series (1950).