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110. On Determination of the Class of Saturation
in the Theory of Approximation of Functions

By Gen-ichiro SUNoucHI and Chinami WATARI
(Comm. by K. KUNUGI, M.J.A., Oct. 13, 1958)

1. Introduction. Let f(x) be an integrable function, with period
27 and let its Fourier series be

(1) _qzi + Ici (ay cos kx+b, sin kx)= ki A ().
=1 =0

Let g,(n) k=1,2, --- be the summating function and consider a
family of transforms of (1) of a summability method G,

(2) P,() =L‘;0_ + ki 9:(n)(a, cos kz-+b, sin ka)
=1

where the parameter n needs not be discrete.

If there are a positive non-increasing function ¢(n) and a class
K of functions in such a way that
(1) [| f(x)— P, () || =o(e(n))” implies f(x)=constant;

(I) || Ax)—Pu@) || =0(p(n)) implies f@)eK;

(III) for every f(x)cK, one has || f(x)—P,(x)]|| =0(¢(n)),

then it is said that the method of summation G is saturated with
order ¢(n) and its class of saturation is K. This definition is due
to J. Favard [2].

The purpose of this article is to determine the order and the
class of saturation for several familiar summation methods. M.
Zamansky [5] has solved this problem for the method of Cesaro-
Fejér, with respect to the space (C) of continuous functions; P. L.
Butzer [1] studied the cases of methods of Abel-Poisson and Gauss-
Weierstrass, employing the theory of semi-groups, but, as he made
use of the regularity of the spaces (L?) p>1, he left the question
open for the spaces (C) and (L).

We give here a direct method to determine the class of satura-
tion for general method of summability, with respect to the spaces
(C) and (L*) p=1. The above condition (I) is easily verified and the
condition (III) is proved by so-called singular integral method. The
inverse problem (II) is the key point of this paper.

2. The inverse problem. Let us write 4,(x)=f(x)— P,(x) and
suppose that there are positive constants ¢, and p such that
(3) limn'(1—gn)=ck’®  (k=1,2,--).

1) The norm means (C)- or (L?)-(p=1) norm.
2) To fix the ideas, we take the limit as n—oo; but, as is easily seen, the follow-

in% airgn;ments remain valid, with appropriate modifications, in other cases (see Theorem
2 below).
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(i) If ||4.(x)]|=0(n""), then we have
a,(1— g,,(n))=_715_ f "4,(2) cos ke dw=o(n-"), (k=1,2, - - -)

and, comparing this with (8), we see

a,=0 and similarly b,=0 (k=1,2,--.)
and consequently we have f(x)=a,/2. Thus the condition (I) is
verified.
(ii) Suppose now || 4,(x)|[|=0(n"") and let N<n. Taking the N-th
arithmetic mean oy[%; 4,] of°° the series
(4) 4,@)~ 3} (1= g.m)A(@),

we have

72l 4,]= 3 (-ama@(1-L)

Because it is well known that || oy[2; F']||<|| F|| (for the spaces
(C) and (L), this is trivial; for (L?) p>1, we have only to apply
Jensen’s inequality), our hypothesis on 4,(x) yields
in other words

N
|Sa-amam(1-5L)] =0
N .
| a-amam(1-5t5) | =ow.
from which it results that, evidently for the space (C) and by means
of Fatou’s lemma for (L?) p=1,

2 tm wi—a (1= g ) | =ow

1
n"‘

that is to say

[gacofi) | -o0

Denoting by ft)(z) the trigonometric series kzlc" A (x), we see that
=1

this is nothing but ||oy[2; fT']|| =0(1), and the latter is equivalent
respectively to

S™(x) is the Fourier series of a bounded function (for the space (C))
St (%) 1is the Fourier series of a function in (L?)

(for the space (L?), p>1)
f¥Y(x) is the Fourier-Stieltjes series of a function of bounded varia-
tion (for the space (L)).
See for example [7, §§4, 31-4, 33].

3. The method of Cesaro-Fejér summation
In this case we have
< (1__k _ sin(n-+1)¢/27°
P"(”)_f?(l ) «@)= 2(n+1) ff( + ){ sint/2 }dt
and



No. 8] On Determination of the Class of Saturation 479

gt =(1-—L2),  lim n(1—gy(m)=t.
The considerations of the preceding section yield
(i) if ||4.(x)]|=0(/n), we have f(x)=constant;
(ii) if || 4.(x)||=0@1/n), we have

Ff(®)eB ie. flx)eLipl (for the space (C))
Fl(@)eLr ie. flx)eLip(l, p) (for the space (L?), p>1)
F(x)eS ie. flx)eBV (for the space (L))

respectively. The inverse is known to be true, see A. Zygmund [6].
Thus we have

Theorem 1. The method of Cesaro-Fejér summation 18 saturated;
its order of saturation is n-', its class of saturation s the class of
Junctions f(x) for which

J(x)eLip 1 (for the space (C))

Fyelr or f'(x)eL®  (for the space (L?), oo >p>1)

F(@x)eBV (for the space (L)),
respectively.

In a manner similar to that in which we have proved the above
theorem, we may show the following theorems.
The Abel-Poisson mean of S[f] is

P,(x):é}Ak(x)rk:zi f"f(x+t) A=) g (<r<1)

1—2rcost-+7r?
and g,(r)=7*. Thus we have
Theorem 2. The method of Abel-Poisson summability is saturat-
ed; its order of saturation is (1—r), its class of saturation is identical
with that of the method of Cesoro-Fejér summability.
The Riesz mean (R, n’, 1) of S[f] is

R,@)=3) (1— <*f? )”)‘Ak(x) and  g.(n)= (1—(_7’;—)')}.

Theorem 3. The method of Riesz summability (R, n’, 1) s
saturated; its order of saturation is n=’, its class of saturation is the
class of functions f(x) for which

Y z)e B (for the space (C))
FU(z)e Lr (for the space (L7), 1<p< o)
el (x)eS (for the space (L))

where fYi(x) denotes the trigonometric series ka"Ak(x).
=1

Corollary. If p is a positive integer, the class of saturation of
the method of Riesz summability (R, n’, 2) is the class of those func-
tions f(x) for which

Je-P(x)eLip 1 iof o 18 even

r th C
Fe-v@elipl  if pis oda TP @)
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fe(x)eLr (for the space (L"), 1<p< ))
feP(x)eBV iof o is even
Fe-v(x)eBV if o is odd
The Gauss-Weierstrass integral of f(x) is

Wi §)= ge—k%““lk(@:\/ %f fwtt) e dt

and gk(€)=6_kze/4

Theorem 4. The method of approximation by the Gauss- Weier-
strass integral is saturated; its order of saturation is & its class of
saturation is the class of functions f(x) for which

(for the space (L)).

f/(x)eLip 1 (for the space (C))

S (x)eL? (for the space (L?), 1<p<< o)

f(x)eBV (for the space (L))
respectively.

Since the Bernstein-Rogosinski mean of S[f] is defined by

B,,(x):i {Sn(x+ 2n’;1 )+Sn<“— ] >}

=A,+ Z cos ——— A, (x)
2n
kr

2n+41
Theorem 5. The method of approximation by the Bernmstein-
Rogosinski mean of S[f] is saturated; its order of saturation is n=%,

and its class of saturation is the class of those functions f(x) for
which

we have g,(n)=cos and

f'(®)eLip1 (for the space (C))
S (x)e L? (for the space (L?), 1<p<< o)
f'(x)e BV (for the space (L))
respectively.
Since the integral of de la Vallée Poussin is defined by
ot g
. 2
_ 2 (n!)? ho— 2n(2n—2)---4-2
f? =l (i1 (P @n—1)(2n—3)---3-1 )
_ (nl)? —1-F o L
90 = T = (=)

we have, as the answer to a problem proposed by P. L. Butzer [1],
Theorem 6. The method of approximation by the integral of
de la Vallée Poussin is saturated; its order of saturation is n-!, its
class of saturation is the class of functions f(x) for which
S'(®)eLip 1 (for the space (C))
S"(x)eLr (for the space (L*), 1<p< )
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flx)e BV (for the space (L))
respectively.

The integral of Jackson-de la Vallée Poussin is defined by

_ T [ 2t sin*?t _ 1 (~sin't >
L@=— f_wf<9c—|— n) Lt (7= o

where
3 3
1—-2 242 |gf? r|=1
S el EJE=
he)=1 -@—|z|) 1<|a|<2
0 |z|=2.

Theorem 7. The method of approximation by the Jackson-de la
Vallée Poussin integral is saturated; its order of saturation is n-%,
its class of saturation 1is the class of function f(x) for which

S'(x)eLip 1 (for the space (C))

S (x)eLr (for the space (L?), 1<p< o)

Sf(x)e BV (for the space (L))
respectively.

The detailed proof of these theorems will appear in another
periodical.

The problem (III) of these singular integrals are well known
(see B. Sz. Nagy [3], I. P. Natanson [4]).
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