√Vol. 34,

108. Hukuhara's Problem for Hyperbolic Equations with Two Independent Variables. II. Quasi-linear Case

By Setuzô Yosida

Department of Mathematics, University of Tokyo (Comm. by Z. Suetuna, M.J.A., Oct. 13, 1958)

1. Introduction. In Part I of this report, we have explained the concept of Hukuhara's problem (we shall use the abbreviation "Problem H" hereafter) for partial differential equations, and proved its correct posedness for the semi-linear hyperbolic systems with two independent variables. In this part, we show the same results for the quasi-linear system.

Consider the real quasi-linear system of the form

(1) $\partial u_i/\partial t - \lambda_i \ (t,x,u) \cdot \partial u_i/\partial x = f_i \ (t,x,u), \ i=1,2,\cdots,N,$ where u stands for the N-dimensional vector (u_1,\cdots,u_N) . We adopt the notations λ,f , etc. to represent the vectors $(\lambda_1,\cdots,\lambda_N), \ (f_1,\cdots,f_N),$ etc. We define the norm $||g||_D$ of a vector $g=(g_1,\cdots,g_N)$ whose components g_i are functions defined on some domain D, such as $||g||_D = \sup_{x\in D} [s_{up} \ |g_i|]$.

Our Problem H for the quasi-linear system (1) is defined quite similarly to the semi-linear case. Namely, let N curves C_i , $i=1,2,\dots,N$ be given on a strip $G_0 = \{0 \le t \le B_0, B_0 > 0\}$ of (t,x)-space and let the value of the i-th unknown u_i of (1) be prescribed on the i-th curve C_i for $i=1,2,\dots,N$. Under these conditions we shall study the equations (1).

If we impose certain restrictions on the magnitude of the constant B_0 and on the situation of the curves C_i , then the Problem H has a solution which is unique and stable under a certain class of smooth functions.

- 1° We assume that the components of λ and f are defined and continuous on a strip $\overline{G} = \{0 \le t \le B, ||u|| \le \rho; B, \rho > 0\}$ of (t, x, u)-space, where ||u|| is defined such as $||u|| = \sup_i |u_i|$. We assume further that they have continuous derivatives up to second order with respect to u, x and their mixed differentiation, and that the norms $||\cdot||_{\overline{G}}$ of all those derived vectors including λ and f themselves are finite.
 - 2° Conditions for the curves C_i

We require that for every i, the i-th curve C_i should be twice continuously differentiable, the absolute value of its curvature should be less than a constant Γ , and C_i should be uniformly transversal to the whole family of the i-th characteristics of (1) for every u such as $||u|| \le \rho$. The explanation of the last statement is as follows. Let

 (t_0, x_0) be any point of (t, x)-space such as $0 \le t_0 \le B_0$. At this point the i-th characteristic $l_i(u)$ of (1) has the direction coefficient $-\lambda_i(t_0, x_0, u)$ (t_0, x_0)), so that the set of direction coefficients $\{-\lambda_i(t_0, x_0, u)\}_{|u| \le \rho}$ gives us the *all possible directions* of the i-th characteristic at this point. Our requirement is that the minor angle between the direction of the i-th curve C_i and that of any possible direction of the i-th characteristic $l_i(u)$ should be bounded from below by a positive constant θ . This requirement is satisfied by all curves nearly parallel to x-axis since we have assumed the finiteness of $\|\lambda\|_{\overline{\theta}}$ in 1° .

3° Conditions for the prescribed values of the solution

We adopt the notation $\phi_i(t,x)$ to represent the prescribed value of the *i*-th unknown of (1), so that $\phi_i(t,x)=u_i(t,x)$ for all points of C_i , $i=1,2,\cdots,N$. We assume that for every i, ϕ_i is twice continuously differentiable along C_i , and that the inequalities $|\phi_i| < \rho$, $|\partial \phi_i| < M_1$, $|\partial^2 \phi_i/\partial s_i| \le M_2$ hold with some constants M_1 and M_2 , where $\partial/\partial s_i$ means the differentiation along C_i .

We define the size of the Problem H for the quasi-linear system (1) as the set of constants $B, \rho, \Gamma, \theta, M_1, M_2$ and the norms $||\cdot||_{\overline{G}}$ of the derived vectors of f and λ mentioned in 1°. Under these assumptions 1°, 2°, 3°, a solution of the Problem H for the system (1) exists on the strip $G_0 = \{0 \le t \le B_0\}$ of (t, x)-space, where B_0 is determined by several inequalities which consist of the quantities derived from the size of the problem. The special choice of curves C_i and functions ϕ_i does not affect the magnitude of B_0 except their contributions to the size of the problem.

If we require that the norm of the derivative of the solution with respect to x should be less than a constant K, then the solution of the Problem H is unique and stable. More precisely, the breadth B_0 of the domain G_0 is determined by the inequalities involving the quantities derived from the constant K and the size of the problem, and the solution of the problem such as $||u||_{G_0} \leq \rho$ and $||\partial u/\partial x||_{G_0} \leq K$, is unique and stable on G_0 .

2. Existence of the solution. In this section we show the existence of the solution of the Problem H for the system (1) under the assumptions that the conditions 1° 2° 3° of § 1 are satisfied by it. To simplify the notations, we assume that f_i and λ_i are the functions of u only. The other cases can be treated quite similarly.

For the moment we impose on B_0 merely the condition such as $B_0 \le B$ and proceed by formal calculations. Further conditions for B_0 will be stated later.

We construct the sequence $u^{(n)}$ successively by the sequence of the Problem H defined such as

(2)
$$\partial u_i^{(n+1)}/\partial t - \lambda_i(u^{(n)}) \cdot \partial u_i^{(n+1)}/\partial x = f_i(u^{(n)}), u_i^{(n+1)} = \phi_i$$
 on C_i ,

where we put $u_i^{(-1)} \equiv 0$ for convenience sake. If we integrate the equations (2) along their characteristics $l_i^{(n)}$ which pass through the point (t_0, x_0) and are expressed such as $x = \psi_i^{(n)}(t)$, then we obtain

(3)
$$u_i^{(n+1)}(t_0, x_0) = \phi_i(t_i^{(n)}, x_i^{(n)}) + \int_{t_i^{(n)}}^{t_0} f_i(u^{(n)}(t, \Psi_i^{(n)}(t))) dt,$$

where $(t_i^{(n)}, x_i^{(n)})$ means the intersecting point of $l_i^{(n)}$ and C_i . Equations (2) are semi-linear (indeed linear) in the unknowns $u_i^{(n+1)}$, so that we can apply the theory of Part I and obtain for every n the unique solution $u^{(n+1)}$ on a strip $G_0 = \{0 \le t \le B_0\}$, where B_0 can be determined by the size of our quasi-linear problem independently of n. Every $u^{(n+1)}$ is twice continuously differentiable with respect to x and satisfies the integral equations (3). If the constant B_0 satisfies further inequalities, then $u^{(n)}$ converges uniformly on G_0 to a limit u which gives the solution of our problem. We shall explain the process briefly.

- $1^{\circ} ||u^{(n)}||_{G_0} \leq \rho \text{ for all } n.$
- $2^{\circ} ||\partial u^{(n)}/\partial x_0||_{G_0} \leq K$ for some constant K.

To prove it, the inequalities $|\partial \psi_i^{(n)}(t)/\partial x_0| \le \exp(B_0 \cdot M \cdot K)$ for $0 \le t \le B_0$, are needed and proved by induction, where M is a constant derived from the size of the problem. The condition to be satisfied by B_0 is the form $M' \cdot \exp(B_0 \cdot M \cdot K) + B_0 \cdot M'' \cdot \exp(B_0 \cdot M \cdot K) \cdot K \le K$, where M', M'' are the constants derived from the size and K must be selected to satisfy the inequalities such as K > M' and $K \ge ||u^{(0)}||_{G_0}$.

Similarly the boundedness of $||\partial^2 u^{(n)}/\partial x_0|^2||_{G_0}$ is obtained under the appropriate condition for B_0 .

 3° $u^{(n)}$ converges uniformly on G_0 to a continuous function u as $n \to \infty$.

Subtracting side by side from (2) the similar equations with n replaced with m, we have

$$(4) \frac{\partial}{\partial t} \left[u_i^{(n+1)} - u_i^{(m+1)} \right] - \lambda_i \left(u^{(n)} \right) \cdot \frac{\partial}{\partial x} \left[u_i^{(n+1)} - u_i^{(m+1)} \right]$$

$$= \frac{\partial u_i^{(m+1)}}{\partial x} \cdot \left[\lambda_i (u^{(n)}) - \lambda_i (u^{(m)}) \right] + f_i(u^{(n)}) - f_i(u^{(m)}).$$

As λ and f are Lipschitzian with some constants L and L' respectively, we have from (4) the inequality such as $||u^{(n+1)}-u^{(m+1)}||_{G_0} \leq (K \cdot L + L') \cdot B_0 \cdot ||u^{(n)}-u^{(m)}||_{G_0}$, which reduces as m, $n \to \infty$ to the formula $d \leq (K \cdot L + L') \cdot B_0 \cdot d$, where $d = \limsup_{n,m \to \infty} ||u^{(n)}-u^{(m)}||_{G_0}$ and K is the constant mentioned in 2° . If we impose on B_0 the condition $(K \cdot L + L')B_0 < 1$, then we must have d = 0, which assures us of the uniform convergence of $u^{(n)}$ to a continuous limit function u. Consequently $\psi_i^{(n)}(t)$ and $(t_i^{(n)}, x_i^{(n)})$ of (3) converge uniformly on G_0 to a limit $\psi_i(t)$ and (t_i, x_i) , and u gives the solution of the integral equations such as

(5)
$$u_i(t_0, x_0) = \phi_i(t_i, x_i) + \int_{t_i}^{t_0} f_i(u(t, \psi_i(t))) dt.$$

If we can prove the smoothness of the solution u of (5), it will give the solution of our Problem H. The *i*-th component u_i of u is continuously differentiable in the direction of the curve expressed such as $x=\psi_i(t)$, whose direction coefficient is $-\lambda_i(u(t,x))=\lim_{n\to\infty}-\lambda_i(u^{(n)}(t,x))$, so that to prove the smoothness of u_i , it remains only to examine the differentiation in x-direction.

 4° $\partial u^{(n)}/\partial x_0$ converges uniformly on G_0 as $n\to\infty$.

Differentiating (4) with respect to x_0 and noticing that on the curve C_i the value of $[\partial u_i^{(n)}/\partial x_0 - \partial u_i^{(m)}/\partial x_0]$ converges uniformly to 0 as $m, n \to \infty$, we can prove the inequality $d \le B_0 \cdot M \cdot d$, where

$$d = \limsup_{m,n \to \infty} || \partial u^{(n)} / \partial x_0 - \partial u^{(m)} / \partial x_0 ||_{G_0}$$

and M is a constant derived from the size of the problem. If we impose on B_0 the condition $B_0 \cdot M < 1$, then we must have d = 0, and $\partial u^{(n)}/\partial x_0$ converges uniformly on G_0 . Consequently, the limit u of $u^{(n)}$ is continuously differentiable with respect to x, so that u belongs to class C^1 and gives the solution of the Problem H for the quasi-linear system (1).

- 3. Uniqueness and stability of the solution. The solution u of the Problem H for the system (1) is unique and stable on a certain strip $G_0 = \{0 \le t \le B_0\}$ of (t, x)-space, if we require that u satisfies $||u||_{G_0} \le \rho$ and $||\partial u/\partial x||_{G_0} \le K$ with a constant K. We notice that the solution obtained in § 2 has these properties.
 - 1° Uniqueness

Indeed, for any two such solutions u and v we should have

(6)
$$\frac{\partial}{\partial t} [u_i - v_i] - \lambda_i(u) \cdot \frac{\partial}{\partial x} [u_i - v_i] = \frac{\partial v_i}{\partial x} [\lambda_i(u) - \lambda_i(v)] + f_i(u) - f_i(v).$$

Since λ and f are Lipschitzian with constants L and L' respectively, integrating (6) along its characteristics, we can prove the inequality $||u-v||_{a_0} \leq (K \cdot L + L') \cdot B_0 \cdot ||u-v||_{a_0}$, so that if we impose on B_0 the condition such as $(K \cdot L + L') \cdot B_0 < 1$, we must have u=v on G_0 .

2° Stability

Let two sets of data C_i , ϕ_i and $\overline{C_i}$, $\overline{\phi}_i$ be given whose contributions to the size are given by the same constants Γ , θ , M_1 and M_2 . We assume that these data have the following properties. To any point (t_i, x_i) of C_i , we let correspond a point $(\overline{t_i}, \overline{x_i})$ of $\overline{C_i}$ which is the intersecting point of $\overline{C_i}$ and one of the possible characteristics $l_i(u)$ through the point (t_i, x_i) . Namely, $l_i(u)$ is expressed as $x = \psi_i(t)$ by the solution

 $\psi_i(t)$ of the ordinary differential equation such as $d\psi_i(t)/dt = -\lambda_i(u(t,\psi_i(t)))$, $\psi_i(t_i) = x_i$, where u is any smooth function defined on $G = \{0 \le t \le B\}$ and satisfies the condition $||u||_a \le \rho$. We require that the inequality $|t_i - \bar{t}_i| \le \varepsilon$ should hold with a positive constant ε for every point of C_i and for every u such as is stated above. We assume further that functions ϕ_i and $\bar{\phi}_i$ are given on C_i and \bar{C}_i in such a way that the inequality $|\phi_i(t_i,x_i) - \bar{\phi}_i|$ $(\bar{t}_i,\bar{x}_i) \le \delta$ should hold with a positive constant δ for every point of C_i and for every possible i-th characteristic. Under these assumptions we can prove easily

(7) $||u-\overline{u}||_{G_0} \leq \delta + B_0 \cdot L' \cdot (||u-\overline{u}||_{G_0} + K \cdot ||\psi-\overline{\psi}||_{G_0}) + \varepsilon \cdot ||f||_{G_0}$, where u and \overline{u} are the solutions of the Problem H corresponding to the data C_i , ϕ_i and \overline{C}_i , $\overline{\phi}_i$. Since the order of the magnitude of $||\psi-\overline{\psi}||_{G_0}$ is that of $||u-\overline{u}||_{G_0}$, formula (7) assures us of the uniform convergence of \overline{u} to u on a certain strip G_0 as δ , $\varepsilon \to 0$, which means the stability property of the solution of our problem.

Remarks. Under certain conditions, we can replace the infinite strip G with the finite domain G'. Definitions and arguments stated in the last section of Part I concerning semi-linear systems, are valid for quasi-linear systems with the single modification that we should consider all possible characteristics in this case. For example; if all N curves C_i pass through a fixed point (t_0, x_0) of G and if there exists a piecewise smooth curve l_0 such as $x=\psi_0(t)$, $0 \le t \le B$, which satisfies the following conditions; $x_0=\psi_0(t_0)$, $d\psi_0(t)/dt \le -||\lambda||_{\overline{G}}$ for $t>t_0$ and $d\psi_0(t)/dt \ge -||\lambda||_{\overline{G}}$ for $t< t_0$, then the right finiteness condition is satisfied along this l_0 , where $G=\{0 \le t \le B\}$ means the strip in (t,x)-space and the relation between G' and \overline{G}' is similar to that between G and \overline{G} .

The author expresses his hearty thanks to Prof. M. Hukuhara, Prof. K. Yosida, and Dr. Y. Sibuya, for their helpful advice and incessant encouragement.