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1. In the previous two papers [2, III, IVy, we have studied
the Hilbert transform from a point of view of the interpolation of
operation and its applications. In [2, III we have given a negative
example as to the existence of this transformation, so we introduce
a modified definition for a function of the more extensive class. In
the book of N. I. Achiezer [1, p. 126 we find a modified definition,
but this definition does not seem to be appropriate for the case p>2,
because in the class Lv (p>2) the Fourier transform does not neces-
sarily exist. Here we introduce a new definition a generalized
Hilbert transform of order r:

(1.1) (x)-- (x+ f(t) dt
(t+i) x--t’

where r is any positive real number.

In particular fo(X) means the ordinary one. Let f(x) belong to
L’ (pl) and r=n (n=1,2,...). Then we have

(1.2) fn(x)--fo(x)+Cn_l(x+i)’-l+ +Co,
where

dt, (n--O, 1, 2,...).f(t)(1.3) C-_ (t+i)/

The present paper consists of two parts. In the first part we
shall treat the integrability of (1.1) after [2, III3. In the second part
we shall prove the reciprocal formula, and this plays an essential role
in the study of the analytic function in a half-plane, as before [2, IV3.

Chapter I. Integrability of the generalized Hilbert transform

2. Let f(x) be a real or eomplex valued measurable function
over (--oo, oo). In order to make some variety we introduce the
measure function as before

(2.1) p(a, x)-- f" dt
1+it]

(0a< 1).

By L," (p>l) we will denote the class of functions such that

Then i2 we put
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f I ;oo f(t) dt(2.3) Tf (x -F i) - , (t -F i) x- t’
this defines a linear operator of f, and Tf may be considered as an
ordinary Hilbert transform of f(t)/(t+i).

Thus we have immediately the following theorems.
Theorem 1. Let f(t)/(t+i)L$ (p>l, r0, 0a<l) then the

operation Tf can be defined and we have

(2.)
+i

where

(2.6) ]r,(x)-- (x+i)r f f(t) dt

l-l>
(t+i) x--t"

Theorem 2. Let f(x) be a fnction such that

(2.7) f if(x)! lg+ [(1 +Ix l)! f iJ d/
+1i

where rO, 0(a<l. Then the operation Tf can be defined and we
have

(2.s)
+!!

(2.9) limf A,(x)-A(x) -o,

heorem 8. Let f() be a fetio eh that

(2.10) f_ If] lg+ [(ll+]xir+ixl)-l f ]? dx<

where rO. Then we have

(2.11) f_ illl;
F(x) dx

_
Af If lg+ [(llwlx[+[x[)-[ f l? dx+B,

,,.o_ 1+lxi
dx-O,

where

(2.13)

(2.14)
(2.5)

Theorem 4.

/,(x)__j,(x)_ K(x) foo f(t_____) dt,
(t+i)

Kl(x)=l/x if xil, ----0, elsewhere,

F(x) lim F,,(x).
0

Let f(x)/(x+i) belong to L (0a<l). Then the



No. 1] On the Singular Integrals. V 3

operation T,f can be defined and we have

(2.16) f’(x)]; d/z <
+1 {-(-)} +1

imf ,(x)-(x)(2.17)

where 0<<1, >(1--a) and A is an absolute eonstant.
3. In the sequel we also define a modified discrete transform,

that is for any sequence X=(..., x_, x0, x,...) we define X by the
following formula:

(a.) x-(..., x% x?), x?’), .),

(s.2) )-(n+i) E’ x
(m+i) n-m’

where the prime means that the term m--n is omitted in summa-
tion. Sinee [")/(n+iy] is an ordinary discrete Hilbert operation of
[xJ(n+iy}, we have the following theorems:

Theorem 5. Let X be a sequenee sueh that

(a.a)

_
X+ini+

<, (p>x, e0,

Then X can be defined and we have

(a.4)

_
X+lni

_A.,
+i!+"

Theorem 6. Let X be a sequenee sueh that

(3.5) i Iog E(x +In i)-1 I <
+inir+"

for rO, 0<a< 1. Then the operation can be defined and we have

heorem 7. e X e eqeee e
(s.) II+E(+iI)-’II <

1+i1"

i’)*, <A ll]+E(+li)- ii(s’s) - +! +!i" -+’
where

(3.9)

Theorem 8.
n (n+iy

Let X be a sequence such that

i1 < (>o, o<<).E
l+inl

Then the operation Xr can be defined and we have
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(3.11)
l+[n[;/ e{a--e(1--a)} l+ln !/"

where 0<e<l, 3:>e(1--a) and A is an absolute constant.

Chapter II. The reciprocal formula and artalytic functions
in an upper half-plane

4. Let g(x) be a real valued measurable function over (--oo, oo).
We introduce some notations:

(4.1) Cr(Z, g)-- (z_i)r foo g($) dt
2zri ($ +i) t--z’

(4.2) P(z, g)- (z+ i) f g(t) y dt
(t +i) (t- x)+y’

(4.3) P(z, g)-- (z+i)f g(t) (t--x) dt
(t+i) (t- x)+y"

If we put r--0 we have C(z,g), P(z,g) and P(z,g).in [2, IV
respectively. We have also

(4.4) 2Cr(Z, g)--P(z, g)+iP.(z, g).
By analogous arguments follows:

Theorem 9. Let g(x)/(x+i) belong to L (pl, 0a<l). Then
we have

(.5) (S)-lim P(z, g)-g(x) (y-->O), a.e. x,
y..-o

lim/’’] P(z, g)--g(x)(a.6) dz-0.

Proof. The (4.5) is trivial. As to (4.6) we have

(4.7) f P(z, g)-- g(x) dt

1+x (t+i) (t--x)+y

ii-- _= (+t+) t+ (+)r

o(1), (y 0).
Theorem 10. Let g(a)/(x+i) belong to L (p>l, 0a<l),

g(a)/(a+ i) and (a)/(a+i) both belong
have also

(4.8) (S)-limP(z, g)-(a), a.e.
yO

limF g)-y(x)(4.9)

Then we
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Instead of this theorem, it is enough to prove the next one:
Theorem 11. Let g(x)/(x+i) belong to L’, (p:>l, 0a<l), or

g(x)/(x+i) and (x)/(x+i) both belong to L, (0a<l). Then we have

(4.10) Pr(z, g)-- Pr(z, ).
Proof. Since it holds that Po(z, g)--P(z, 0), we have

(4.11) (z+i)rf ( g(U)_ du ) y dr

J_ (u+i) t--u (t--x)+y
Pr(z, r)"

By Theorems 9 and 10 we have
Theorem 12. Under the assumptions of Theorem 10, we have

(4.12) C(z, g) C(z, i).
Theorem 13. Under the assumptions of Theorem 10, we have the

reciprocal formula
(4.13) ()(x)----g(x), a.e. x.

We take this property as a base of our arguments as before.
5. In this section we establish the representation theorem of

Cauchy and Poisson type, under giving the boundary function.
Theorem 14. Under the assumptions of Theorem 10,

(5.1) f(z) 2Cr(z, g)
defines an analytic function on the upper half-plane and

(5.2) (S)-lim f(z)-f(x)- g(x) +i(x), for a.e. x,

and f(z) is represented by its Cauchy and its Poisson integral re-
spectively.

Theorem 15. Let f(z) be represented by its Cauchy integral with
limit function f(x), such that f(x)/(x+i) belongs to L$ (pl,
<:1), then we have

(5.3) (]f)r--f and (f)-- 9f
Theorem 16. Let f(z) be analytic in the half-plane y> O. Let

f(z) have the limit function f(x) such that f(x)/(x+i) belongs to
L$ (p:>l, 0a<l). Furthermore this limit exists as an angular
limit on a point of a set of x with a positive measure. Then f(z)
can be represented by the formula
(5.4) f(z) C(z, f).

Theorem 17. Let f(z) be analytic in the half-plane y>O and
have the limit function f(x) such that f(x)/(x+i) belongs to L$ (pl,
0a<:l). Then whenever f(z) is represented by its Cauchy integral
of order r, it is also represented by its Poisson integral of order r
and vice versa.

5. In this section we treat an analytic function in the upper
half-plane of the so-called ," class. That is an analytic function in
y :> 0 such that
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(6.1) f(x+iy)[ dl)/<const.
for 0<y

Let f(z) be analytic and f(z)/(z+i) belong to $, then if we
consider f(z)/(z+i)/ instead of f(z) we have by similar arguments

Theorem 18. Let f(z)/(z+i)’, rO belong to (pl, 0a<l)
there exists a limit function f(x) such that f(x)/(x+i) belongs to
L$ and furthermore this limit exists as an angular limit.

Theorem 19. Under the assumptions of Theorem 18, we have

(6.2) f(z)-- o(! z !), as z --> unif in y>O.
Theorem 20. Under the assumptions of Theorem 18, we can write

(6.3) f(z)- B(z)H(z)
where H(z) belongs to the same class of f(z) and does not vanish in
the upper half-plane and

z--z --i(6.4) B(z)-
z-5 z+i

with [z} a sequence of zeros of f(z) in yO. This product has
properties:

(6.5) B(z) < 1 for all y> O,
(6.6) (S)-lim B(z) 1, a.e. x.

y-0

Theorem 21. Under the assumptions of Theorem 18, f(z) is
represented by its Cauchy and its Poisson integral. As for real
part of f(x) we have also

(6.7) f(z)-2C(z, f)-P(z, lf)+iP(z, f).
Theorem 22. Under the assumptions of Theorem 18, we have

(6.8) limf f(x+iy)-f(x)
v-o I -- X rp

d[ O.
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