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4. Idempoterts of rank 1. This section is devoted to note several
fundamental statements concerning the idempotents in an algebra, which
we shall need in what follows.

LEMMA 1.) Let p be an idempotent in an algebra E. If Ep
(resp. pE) is a minimal left (resp. minimal right) ideal of E, then
pEp is a division algebra.

Proof. It will suffice to prove the lemma in the case of Ep under
the assumption that pEp {0}. Since p is an idempotent, p is the
identity in the algebra pEp. Let x be a non-zero element in pEp;
hen Ex contains px=x, so that Ex=Ep since Ep is a minimal left
ideal. It follows that pEx--pEp, and hence we have pEpx--pEp.
Therefore the element x has a left inverse in pEp.

LEMMA 2. Let E be an algebra satisfying the condition (ii),)

and let p be a non-zero idempotent in E. If pEp is a division
algebra, then Ep is a minimal left ideal and pE is a minimal right
ideal of E.

Proof. Let I be a proper non-zero left ideal contained in Ep, and
a be a non-zero element in L Then by the condition (ii) we can find
an element uE such that puaO. Since pua is contained in the
division algebra pEp, it has an inverse pxp in pEp; then pxpua--p.
Therefore the left ideal I contains the element p, and so I coincides
with Ep contrary to the assumption. Similarly we can prove that pE
is a minimal right ideal.

LEMMA 3. Let p be an idempotent in a Hausdorff topological
algebra E, and A be a closed subset of E. If Ap (resp. pA) is con-
tained in A, then the set Ap (resp. pA) is closed.

Proof. it will suffice to show that Ap is closed, under the assump-
tion that Ap A. Let be a filter on the set Ap which converges
to an element aA. Then, since each element of the filter is a sub-
set of the set Ap, we have p={Bp; Be}=. On the other hand,
because of the continuity of the ring multiplication, the filter base p
converges to ap, and so we have a---ap since E is a Hausdorff space.

1) This lemma is essentially known, but we give a proof for the sake of com-
pleteness.

2) Cf. S. Kasahara: Representation of some topological algebras. I, Proc. Japan
Acad., 34, 355-360 (1958).
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Let E be an algebra; we say that a non-zero element a of E is

of rank 1 if, for any x e E, there exists a number 2 such that axa--2a.

LEMMA 4. Let E be an algebra satisfying the condition (ii).
If p and q are non-zero elements in E of rank 1, then there exist
a,b, c and dE such that p--aqb and q-cpd. If p and q are two
non-zero idempotents in E of rank 1, then there exist a, beE such
that p-aqb and q--bpa. Moreover, if p is a non-zero element in E
of rank 1, then every non-zero element of the form xp or px is of
rank 1.

Proof. Let p and q be two non-zero elements in E of rank 1,
and let puq 0. Then by the condition (ii), we can find an element
sE such that qspuq--q. Thus q--cpd for c--qs and d--uq. It is
now evident that there are two elements a, beE such that p--aqb,
but we will prove this by another way. Since p is of rank 1, we
have puqsp--p for some ; but then puq=puqspuq--puq and hence
--1. Thus we have p--puqsp. Therefore if the elements p and q are
idempotents, we can write p--aqb and q=bpa by taking a--puq and
b--qsp. Finally, if p is a non-zero element in E of rank 1, and if
xp O, then we can find, for each u e E, a number such that puxp--p.
Therefore we have (xp)u(xp)-xp, and hence xp is of rank 1. The
proof is similar for px O.

COROLLARY 1. Let E be an algebra satisfying the condition (ii).
If p and q are two non-zero elements in E of rank 1, then EpE
=EqE.

COROLLARY 2. Le$ E be an algebra satisfying the condition (ii)
and containing a non-zero element p of rank 1. Then every two-
sided ideal IO of E contains EpE. Consequently, the vector sub-
space spanned by the set EpE is the minimal two-sided ideal of E.

Proof. Since I{0}, I contains a non-zero element a. By the
condition (ii) there exists an element u eE such that aup O, and.
so again by the condition (ii) we can find an element veE such that
pvaupO. Therefore, the two-sided ideal I contains the element
pvaup and so p. It follows that EpE is contained in L

COROLLARY 3. Let E be an algebra satisfying the condition (ii).
If p and q are two non-zero elements in E of rank 1, then the vector
space pEq is of one dimension.

Proof. By Lemma 4, there exist two elements a, beE such that
p-aqb. Hence we have pxq-aqbxq for every x eE, and so the vector
subspace pEq is spanned by aq.

LEMMA 5. Let p and q be two non-zero idempotents of rank 1
in a commutative algebra. Then pq if and only if pq--O.

Proof. If pqO, then we have Zp--qp--pq--q for some non-zero
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numbers 2 and /. Therefore P--q-- --\2/P and so p-q. Con-

versely, if p-q, then pq--p-pO.
5o Uniqueness of the representations. In this section we show

that each vector space mentioned in Theorems 5, 7, and 8 is unique to
an isomorphism.

THEOREM 9. Let E be an algebra satisfying the condition (ii).
If p and q are ,non-zero idempotents in E of rank 1, then the vector
space Ep (resp. pE) is isomorphic with the vector space Eq (resp. qE).
Let E be a Hausdorff topological algebra satisfying the condition ii)
and containing two non-zero idempotents p, q of rank 1. Let
(resp. ’) be the family of all left bounded sets contained in Ep (resp.
in Eq), and (resp. ’) be the family of all right bounded sets con-

tained in pE (resp. in qE). Then the vector space Ep with the right
-topology (resp. pE with the left ?I-topology) and the vector space
Eq with the right ’-topology (resp. qE with the left I’-topology) are
isomorphic (topologically and algebraically).

Proof. By Lemma 4 of the section 4, we can find two elements
a, beE such that p--aqb and q-bpa. We define a linear mapping
of Ep into Eq by (xp)-xpaq. Then is an isomorphism of Ep onto
Eq. In fact, if xpyp, we have, by the condition (ii), xpwq ypwq
for some weE, and so xpaqbwqypaqbwq; this implies that xpaq

ypaq, namely that (xp) (yp). Moreover, since F(xqbp)--x(qbpaq)
--xq for all x eE, we see that maps Ep onto Eq. Now the linear
mapping defined by (qx)-paqx is also an isomorphism of qE onto
pE. In fact, if qx qy, then we have, for some weE, pwqx: pwqy,
that is pwbpaqx pwbpaqy, and so paqx paqy. This shows that the
mapping is one-to-one. On the other hand, since (qbpx)--paqbpx
--:.px for every x e E, is onto. Thus the vector spaces pE and qE are
isomorphic. Let us suppose now that the algebra E is equipped with
a topology compatible with the structure of E. Then with the notation
in the theorem, we have ()-:V and (3’)--3. In fact, if AI, then
Aaq--(A) is left bounded in Eq, that is (A)
and (Abp)-Abpaq-A since A Eq. By an analogous way, we can
prove that (3’)--3. As was pointed out in the section 3, the vector
spaces Ep and pE constitute a separated dual system, and of course
Eq and qE too. Therefore, in order to complete the proof of the
theorem, it is sufficient to show that the conjugate mapping of
or equivalently that qyxpaq- 2q if and only if paqyxp-- 2p (x, y E).
For this, it suffices to prove that qyxpaq=2q and paqyxp--lp imply
2=/. But this is obvious by the following simple computation:

2paq pa(qyxpaq) (paqyxp)aq --/paq.
THEOREM 10. Let X be a locally convex Hausdorff vector space,
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and (R) be a covering of X consisting of closed bounded convex and
circled sets. Then each subalgebra E of the algebra (X, X) con-
taining all continuous linear mappings of finite rank satisfies the
conditions (i’), (ii), (iii) and (iv).

Proof. Let z be an element of X’ and z’ be an element of the
dual space X’ of X. We shall denote by z’ (z the linear mapping of
X into itself: x--> (x, z’}z. To verify the condition (ii), take two non-
zero elements u, v in E. We can find then two points x, yeX such
that u(x) 0 and v(y) O. Since X is a Hausdorff space there exists
an x’ e X’ such that (v(y), x’} O. But then, as can easily be seen, the
mapping w----x’)x possesses the required property. Now let zeX and
z’eX’ be such that (z, z’}--l; then we have

(z’)z)u(z’(z)--z’)ZoZ’U(Z)--(u(z), z’}z’z for every ueE
and z’)z) z’)z) z’)z.
This proves that the condition (i’) is satisfied by taking p--z’@)z.
Therefore, Ep is the set of all mappings of the form: z’u(z), u eE,
and pE is the set of all mappings of the form: u’z’@)z, u eE, where
u’ is the conjugate mapping of u. Since E contains all continuous
linear mappings of finite rank, Ep and pE are isomorphic (algebraically)
with X and with X’ respectively. We shall now show that every right
bounded set B’z in pE is relatively compact in pE for the left
{{x}; xEp}-topology. To prove this, it is sufficient to show that the
set B’ is relatively compact for the weak topology a(X’, X), or equiv-
alently that the polar set B’--{xeX; l(x,x’}[l for every x’eB’} of
the set B’ is a neighbourhood of 0 in X. Let us denote by V0 a neigh-
bourhood of 0 in X with the property that 2z e V0 if and only if 121
1. Then, since B’z is right bounded, for any A e(R), there exist a
member B of (R) and an open neighbourhood U of 0 in X such that
(B’(z) W(B, U) W(A, Vo). In other words, for each u W(B, U), the
set (u(A), B’}z is contained in the neighbourhood V0, and hence we have
u(A) B’ for every u e W(B, U). It follows that W(B, U) is contained
in the set W(A, B’). Now we can suppose, without loss of generality,
that the set A is contained in B, because we have W(B, U)_ W(C, U)
for the closed convex circled hull C of the set AB. Let a be a point
of A. Then there exists a positive number ,u such that taB and
that 2 implies 2a-B. Take a number a greater than p.. If there
is an x0 U which does not belong to aB’, then U being open, we can
find an ]:>1 such that ]x0 e U. Since /r>/, the point /]a does not
belong to B. Hence, by virtue of the Hahn-Banach theorem, there
exists a continuous linear functional x’ X’ such that (z]a, x’}-- 1 and
i(b, x’}l<l for all beB. It is easy to see that the mapping u--x’)Xo
belongs to the set W(B,U) and that u(ga)--Xo. Since fa is a point
of aA, this contradicts the assumption that XoaB’. Therefore (l/a)U
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is contained in B’, and so B’ is a neighbourhood of 0 in X. Thus
the algebra E satisfies the condition (iii). We will now proceed to
prove the condition (iv). Since the (% )-topology is coaser than the
original topology of E, it suffices to show that every neighbourhood
W(A, U) of 0 in E contains a neighbourhood of 0 for the (, )-topology.
Let B e (R), then for some > 0 we have (b, z’}] for all b B. There-
fore, for any neighbourhood V of 0 in X we have

W(2A, V)(z’@A) W(B, V),
so that z’@A is left bounded in Ep. On the other hand, for any
neighbourhood V of 0 in X, we can find a positive number a such
that 2z V whenever 121a. But then we have

U )z) W(A, a U) W(A, V),
proving that U@z is right bounded in pE. Consequently, the set
W= W(z’)A, W,(Uz, W(z, V0))) is a neighbourhood of 0 for the (I,
)-topology. Let u W; then since (U)z)(z’)u(A))= (u(A), U}z’@z,
we have (u(A), U}(z, z’}z= (u(A), U}z Vo, and hence u(A) U. It
follows that W is contained in W(A, U). This completes the proof of
the theorem.

As immediate consequences of the above two theorems, we have
the following corollaries:

COROLLARY 1. If E is an algebra isomorphic with a subalgebra
of (X, X) containing all continuous linear mappings of finite
rank, then the vector space X is unique to an (algebraic) isomorphism.

COROLLARY 2. If E is a topological algebra isomorphic (topolo-
gically) with a subalgebra of .$(X, X) containing all continuous
linear mappings of finite rank, then the locally convex Hausdorff
vector space X is unique to a (topological) isomorphism.

COROLLARY 3. Let X and Y be two locally convex Hausdorff
vector spaces. If a subalgebra of (X, X) containing all continuous
linear mappings of finite rank is isomorphic with a subalgebra of
.(Y, Y) containing all continuous linear mappings of finite rank,
then X and Y are isomorphic.

6. A remark on simple algebras. An algebra E is said to be
simple if it contains no two-sided ideal other than {0} and E. If a
topological algebra E contains no closed two-sided ideal other than {0}
and E, then we call E topological simple algebra. Let X be a locally
convex Hausdorff vector space; it is an immediate consequence of
Corollary 2 of Lemma 4 of the section 4 and Theorem 10 that every
two-sided ideal of the algebra ?(X, X) contains all continuous linear
mappings of finite rank. Therefore, if, for example, X is an infinite
dimensional Banach space, then the algebra A?(X, X) with the topology
of uniform convergence on the unit sphere is not sinple though it
satisfies the condition (ii). The purpose of this section is to show that
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some simple algebras satisfy the condition (ii).
LEMMA 1. [f E is a simple algebra, then either EE--{0} and E

is of one dimension, or it satisfies the following condition:
(,) For any non-zero element a eE, we can find two elements

x, y e E such that xa 0 and ay O.
The same conclusion holds too for a Hausdorff topological simple

algebra E.
Proof. Suppose for example that there exists a non-zero element

a in the simple algebra E such that xa--O for every x eE. Then since
xaE-----{0} for any x eE, aE is a two-sided ideal of the algebra E, and
hence aE-E or aE--{0} by the simplicity of E. But the first case
does not occur. For if aE--E, then since a2--O, we have aE--{0},
and so E-- {0}, which contradicts a 0. Therefore aE={O}. Hence
the two-sided ideal generated by the single element a is nothing more
than the subspace spanned by a. But then since E is simple and a 0,
this ideal is E itself. To prove the case where E is a Hausdorff
topological simple algebra, it will suffice to show that a 4=0, Ea--{0}
and aE--E imply a contradiction, because every one dimensional sub-
space of E is closed. Now since a.aE--O.E-{O}, we have a.aE:{O}
by the continuity of the ring multiplication. Thus we have E--{0},
a contradiction.

LEMMA 2. If E is either a simple algebra or a Hausdorff
topological algebra and if EEl= {0}, then the algebra E satisfies the
condition ii ).

Proof. For a contradiction, we suppose that the simple algebra E
does not satisfy the condition (ii). Then there exist two non-zero
elements u, veE such that uv--O for every eE. It is clear that
the subspace F spanned by the set EuE is a two-sided ideal of E.
Since we can find, by Lemma 1, two elements a, beE such that aub= O,
the two-sided ideal F coincides with E. Therefore, for any x eE, we

can find a finite number of elements x, yeE such that =,uy
and consequently we have v=_ uyv--_ x0--0 for every xE;
but this is impossible in view of Lemma 1. If E is a Hausdorff
topological simple algebra, then the two-sided ideal F is dense in E,
and hence we have also Ev-{0}, since Fv--{0} by the assumption, and
since the ring multiplication is continuous.

It is easy to see that the condition (ii) implies the condition (.).
But in general, the condition (*) does not imply the condition (ii) as
the following example shows: Let S be a set consisting of two points,
say $ and $2; then the algebra (S, R) of all real valued functions
defined on S satisfies the condition (.) as can be readily seen. Let u
and v be two functions on S such that u(t) 0 v(2) and u()-v()
-0. Then we can not find any function on S for which we have
uv= O. Thus the algebra (S, R) does not satisfy the condition (ii).

3) We can generalize the following lemmas to semi-groups or mobs.


