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51. On Extreme Elements in Lattices

By Yataro MATSUSHIMA
Gunma University, Maebashi
(Comm. by K. KuNuGl, M.J.A., May 7, 1959)

In a series of papers [2-6] we have studied the concept of B-
covers and B*-covers in lattices. B(a,b)={x|axb}, B*(a,b)={y]|aby},
where axb means that x=(a—z)~(b—z)=(a~x)—(b~2). B(a,b) is
called the B-cover of a and b. We shall say that an element e of a
lattice L is an extreme element to an element x of L (or e is extreme
to x) if B*(x,e)=e. An element e is called extreme if it is extreme
to some element of L. By (a,b)E we shall mean that b is extreme to
a (that is, B*(a,b)=>b). We shall call (a,b) an extreme pair when
(a,b)E and (b, a)E; we denote it by (e, b)E..

If (a,b)E, and a and b are comparable, then (a,b) equals (O, I).
Elements O, I satisfying OxI for all x are called “extreme” by G.
Birkhoff [1]. If o and b are complemented, then (a,bd)E, by our
definition [Theorem 1]. In Theorem 2, we shall give a representation
of a Boolean algebra by maximal extreme B-covers. If (a,b)E, then
we shall be able to find out an extreme pair (a,, b)E, by Theorem 4.
If the space of a topological lattice is compact, then we shall call this
space a compact lattice. After Birkhoff [1], a chain is complete if
and only if it is topologically compact. If we denote by E(a) the
set of all elements which are extreme to an element a in a compact
lattice, then we shall find some interesting properties of E(a) [Theo-
rems 7 and 8], and we shall prove that a compact extreme lattice
which consists of extreme elements is a complemented lattice [Theo-
rem 97.

Theorem 1. If o and o’ are complemented in a lattice, then
(a, a')E..

Proof. If aa’z, then we have a'=(a~a')—(a'~x)=a'~z, a'=
(a~a)~(a'~x)=a~x from a~a =0, a~a’=I, and hence we have
a’=x, thus we have B*(a,a’)=a’. Similarly we have B*(a/,a)=a.
Hence we have (a, @')E,. The converse of this theorem is not always
true.

Lemma 1. B(a,b)=B(a~b,a—b) in a distributive lattice.

Proof. This is proved by [8, Theorem 3].

Lemma 2. In a Boolean algebra L, if (a,b)E,, then a-—b=I,
a~b=0.

Proof. Let a’ be the complement of @, then B(a,a’)=B(a~a,
a—a)=B(0,I)=L by Lemma 1, Hence beB(a,a’), that is, aba’,
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Accordingly if (a,b)E,, then b=a’.

Definition. B(a, d) is called a maximal extreme B-cover if (a, b)E,
and if there exists no extreme B-cover B(c, d) such that B(e, d) D B(a, b)
but neither B(a, b)=B(c, d) nor B(c, d)=L.

Theorem 2. In a Boolean algebra L, any extreme B-cover is a
maximal extreme B-cover and E(L)=L=B(a,a’), where E(L) is the
set of extreme elements of L, and o' is the complement of a.

Proof. This is proved by Theorem 1 and Lemma 2.

Lemma 8. In a lattice axb implies a~b=x=>a~b.

Proof. Since z=(az)~(b—u)=x—(a~b)=x we have z—(a~b)
=2, hence x=a~b. Similarly we have a—b>z.

Lemma 4. acb implies B*(a,b)C B*(c,b) in a lattice.

Proof. acb and abx imply cbx by [3, Lemma 4].

Lemma 5. B*(a,b)=B*(a—b,b)~B*(a~b,b) in a lattice.

Proof. Since a—be B(a,b) we have B*(a,b) CB*(a—b, b) by Lemma
4. Similarly B*(a,b)C B*(a~b,b). Conversely if x belongs to B*(a—
b, b) and B*(a~b,b), then zeB*(a,b).

Lemma 6. If xeB*(a,b), then xeB*(a’,b) for any o’ such that
a~b=a'=a~b.

Proof. B*(a’, b)=B*(a’~b, b)~B*(a’~b, b), B*(a, b)=B*(a—b,b)~
B*(a~b,b) by Lemma 5, but B*(a—b,b)C B*(a’—b,b), B¥(a~b,b)
B*(a’ ~b,b) by Lemma 4; hence we have B*(a,b)C B*(a/, b).

Lemma 7. If (a,b)E, then (¢,b)E for any c such that c—b=a
b, c~b=a~b.

Proof. As in the proof of Lemma 6, we have be B*(¢, b) C B*(a, b)
=b, and hence B*(c, b)="0, that is, (c, b)E.

Now we shall write (a, b)E’ when b is not extreme to a.

Theorem 3. In any lattice

(1) af (¢/,b)E, (b, a)E for o,b'cB(a~b, a—b), then we have (a,
b)E,;

(2) f b is not extreme for some c¢ satisfying c—~b=ab, c~b
<a~b, then (a,b)E’.

Proof. (1) If (a/,b)E for a’cB(a~b, a~—b), then we have (a, b)E
by Lemma 7, similarly we have (b, @)E. (2) is proved immediately
from Lemma 6.

Theorem 4. In a lattice if (a,b)E and B*(, a)>a,2a, then we
have (a, b)E. Moreover if there exists a,=za, such that B*(b, a,)3a,,
then (as, b)E; thus if we find, by repeating this method, an element
a, such that B*(b, a,)=a,, then (a,, b)E,.

Proof. If B*(b,a)>a,, then b—a,=>b—a, b~a,<b~a by Lemma 3
and hence (a,, b)E by Lemma 7. Similarly we have (a,, b)E, and hence
we have (a,, b)E, together with (b, a,)E.

Lemma 8. For a=0, E(a)5I if and only if there exists x=1
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such that a—x=1I.

Proof. If alx, then a~x>=1 by Lemma 3, and hence we have
a—x=1I If a—x=1I, then we have alx by the definition.

Lemma 9. If (x, I)E, then (y, )E for y=u.

Proof. Suppose that (y, I)E’; then there exists # such that y-—
u=I w1 by Lemma 8, hence x~u=I from I=y—u=<x-—wu, this
contradicts the hypothesis.

Lemma 10. If (z,a)E and (y, @)E, then (2, a)E for y<z=x.

Proof. Suppose that (2, a)E’; then there exists u-a satisfying
zaw, so that a=(z—a)~(a—u)=(y—a)~(a—u)=a and a=(z~a)-
(a~u)=Z(x~a)—(a~u)<a. Hence we have @ (y—a)~(a—u)=a and
@ (x~a)—(a~u)=a. In this case, (i) if u=a, then we have yau
together with @ and (ii) if w=<a, then we have xau together with
@, and (iii) when @ and « are non-comparable, let u,=a—u, u,=a~u,
then we have yau; and xau, since zau implies zau, and zau,. In each
case of (i), (ii), (iii), we have a contradiction to the hypothesis. Thus
we have the assertion.

Theorem 5. Let C={c|E(c)>0, I, a, b, where (a,b)E,} in a lattice.
If Caxy for x=y, then we have zeC for x=z=y.

Proof. This is a consequence of Lemmas 9 and 10.

Theorem 6. In a lattice if (d,a)E, (e,b)E and M=B*(a,d)~
B*(b, e), then E(x)>a,b for xeM.

Proof. If (d,a)E and B*(a, d)>d,, then we have (d;, )E by Th. 4.
Similarly if (e, b))E and B*(b, e)se,, then we have (e, b)E.

Henceforth we shall assume that L is a compact lattice with O
and I

Theorem 7. In a compact lattice we have

(1) E(e)=I if and only if ¢=0,

(2) E(c)={0, I} if and only if L=(c]- [c), where [¢)={z|z=c},
(c]={z]2=c}.

Proof. (1) Suppose that E(c)=1I and c¢=:0; then there exists
a non-comparable element b, to ¢ satisfying ¢~b,=0 since E(¢)30 by
the dual of Lemma 8. Since (¢, b,)E’ by the hypothesis there exists
b, such that B*(c, b,)3b,==b,. From (¢~b,)—(b;~b,)=b, and ¢c~b,=0
we have b,>b, and hence b,~c=b,~¢, but b,—c=b,—¢c, for if by—c
=b,¢, then B*(¢, b;)=B*(¢c*~b,, b,) ~B*(¢c~b,, b;)=B*(c—b,, b;) ~B*(0,
b,)3b, by Lemma 5, and hence (¢—~b,)b,b,. On the other hand, (¢-—b,)b:b,
from b, <b,<c-—b,, thus we have b,=b,, a contradiction. Then we have
b ~ec<by—c.

Similarly since (¢, b,)E’ there exists b, such that B*(e, b,)3b;= b,
and c¢—b,<c—b,. Accordingly we have an increasing chain b, <b,<
«e.<b,<---, and hence c—b,<ec—b, <. <e~b,<--- . Since L is
a compact lattice, we have b,—b, and hence ¢—b,—>c—b,.



No. 5] On Extreme Elements in Lattices 229

Furthermore we have c¢bb;, where b, is non-comparable to ¢, for
(¢~~b,) ~ (b ~b3) = (¢~b,) ~b; = (¢~~b,) ~ (¢~~b,) ~b; = (¢~~b;) ~b, =b, by
¢b,b,, cbb,. And if b,=>c, then (¢—b,)~by=c—b, b, contrary to cbb,,
and if ¢=b,, then ¢=b, contrary to the hypothesis, thus b; is non-
comparable to ¢. Similarly we have c¢b,b,, where b, is non-comparable
to ¢, and cbb, tends to cbb, as b,—b, since L is a compact lattice.
Then, we have b, —(¢~b,)=b,, and hence b, is non-comparable to c.
On the other hand, we have (¢, b,)E from the meaning of least upper
bound, this contradicts the hypothesis. Consequently we have ¢=0.
The converse is trivial.

(2) We shall prove that there is no element which is non-com-
parable to ¢. Let b, be a non-comparable element to c.

Since E(c)={0, I} we have ¢~b,>0, c¢—b,<I and (c, b,)E’, hence
there exists d==b, satisfying B*(c, b)>d. If d>b,, let d=b, and if
d<b,, then let bi=d. If d is non-comparable to b,, then let b,=b,—d,
b,=b,~d. In these cases b, and b, are both non-comparable to ¢ and
by —e<by e, by~c<bi~c as in (1).

Repeating this method we have two chains, increasing and de-
creasing, as follows:

bi<by< oo <b,< vy by>bi>--->b,>--., where b, and ¥, are
non-comparable to ¢ and ¢b;b,, cbbs, .-+, cbdb,,--- and cbbh, b, -,
¢cbbl,- -+ (it may happen that one of those sequences does not occur).

Since L is a compact lattice ¢b,b,— ¢bb, and c¢b,b,— cb,b, as b,—> b,
and b,— b} respectively, where b, and b) are non-comparable to ¢ and
(¢,b0)E, (c,b))E in the same way as in (1). This is a contradiction,
thus we have the assertion of (2).

Theorem 8. In a compact lattice E(a)=b implies a~b=1, a~b
=0.
Proof. Since it is obtained by (1) Th. 7 in case b=1, we may
prove in case b0, I, whence a0, 1. From E(a)50, I there exists
b, b, such that a—b,=I, a~¥=0. When a~b,=0 or a-b=1I we
have b=b,=b] satisfying a~b=I and a~b=0 from E(a)=0b and
Theorem 1.

If b, b, are both distinet from b, that is, a~b,>0 and a-b <1,
then B*(a, b,)3b, such that b,<b,, a~b,<a~b, and B*(a,d))>b, such
that b >b, a—bi>a-b, since a—b,=I, a~b/=0 and E(a)3b, 0.
Moreover since a-b,=a-—b,=I and a~b;<a~b=0 from abb,, abb,
by Lemma 8, we have a—b,=I and a~b,=0. If a~b,>0 and a—b,
< I, then repeating this method we have increasing and decreasing
chains {b,} and {b}}, where

a~b>a~by>--->a~b,>-; ab<abi< - <ab,<---;

a~b=a-by=---=I, a~bl=a~b=-.-=0.

If b,—~>b, and b, b}, then since L is a topological lattice we have
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E(a)3b,, b, in the same way as in (2), Th. 7 and a,—b,=1, a,~b,=0.
Thus we have b,=b,="b, satisfying a~b=I, a~b=0, this completes
the proof.

Now we shall call a lattice L an extreme lattice when every
element of L is extreme.

Lemma 11. xya, xyb, a=c=b imply xye.

Proof. By xya, xyb and a=c=b we have

y=@—y)~(y-d)=(@-y)~(y—-o)=(x-y)~(y—a)=y,

y=@~ Y)Y~ b)=@~y)-y~)=(@~y)-y~a)=y,
and hence we have xyec.

Lemma 12. In case a=b, a=cI and b0, if there exists z such
that x~2=1, x~2=0 for any xcB(a,b), then {B(a, b), 2} is an extreme
lattice. In this case if there exists y such that x,~z=y<I for some
x,€B(a, b), then {B(a,b), 2} is not an extreme lattice.

Proof. The first part of this theorem is obtained from Theorem
1. In the latter part, since z~a=1I from the hypothesis we have
@AY~ (yY~a)=2—(y~a) < (z~y)~(2~a)=2—y=y, and hence from
y~acB(a,b) we have 2~ (y~a)=y since x~z=1I or x—z=y for xe¢
B(a,b). Thus we have zya. We have zyb from z—~b=y. Accordingly
by Lemma 11 we have zyc for ceB(a,b), that is, ¥ is not an extreme
element.

Theorem 9. A compact lattice which is an extreme lattice is a
complemented lattice.

Proof. Let L be an extreme lattice; then if we take ¢=0, I of
L, then there exists x,€L such that (x, ¢)E.

Case I. If B*(c,2)=w, and if ¢—2x,=1, ¢c~2,=0, then z, is the
complement of ¢. If cwx,<I, ¢~2,>0, then let ¢—x,=a, c~x,=b.
In this case there exists z such that z~a=1I and z~a=0, for other-
wise L is not an extreme lattice by Lemma 12. Hence we have
2~c=1I, z~c=0 by Lemma 12,

Case II. B*(c, ;)3 -+, B*(¢, %,_,)3%,,-++ . Since L is a com-
pact lattice ¢~x,—>c~x, and c¢—x,—>c—x, as «, tends to x,, From
CXyXo, CEogy+ * +y CLpy_1 Xy * -, We have

OO S SOL,S SO

CAL =C L=+« Z=C X, ==+ - =C~%, by Lemma 3.

Thus we have (¢, 2)E. Then if cwx,<I, c~x,>0, we can find
the complement of ¢ in the same way as in Case 1.

References

[1] G. Birkhoff: Lattice Theory, rev. ed., New York (1948).
[2] L. M. Kelly: The geometry of normed lattice, Duke Math. J., 19 (1952).
[8] Y. Matsushima: On the B-covers in lattices, Proc. Japan Acad., 32 (1956).



No. 5] On Extreme Elements in Lattices 231

[4] Y. Matsushima: The geometry of lattices by B-covers, Proc. Japan Acad., 33
(1957).

[6] Y. Matsushima: On B-covers and the notion of independence in lattices, Proec.
Japan Acad., 33 (1957).

[6] Y. Matsushima: On the relations ‘‘semi-between’’ and ‘‘parallel’’ in lattices,
Proc. Japan Acad., 34 (1958).



