49. On the Extensions of Finite Factors. II

By Zirô Takeda

Ibaragi University

(Comm. by K. KUNUGI, M.J.A., May 7, 1959)

Since extensions of a continuous finite factor A are closely related with extensions of the group K of all inner automorphisms of A [2], some fundamentals of the cohomology theory of groups reflect upon constructions of extended factors. In this paper we shall show that the effectiveness of a group G of automorphism classes for the construction of extended factors is decided by the fact that a three-dimensional cochain associated with G is coboundary or not. In general, the group K has no central element other than 1 and so, by a proposition of group extensions, the extension of K by G is uniquely determined within equivalences. On the other hand we shall define an equivalence relation in factors extended by G analogously to the one for extended groups and then show that the equivalent classes of extensions of A by Gare one-to-one correspondent to the second cohomology group $H^2(G, Z)$, where Z is the unit circle in the complex plane and G is assumed to act on Z trivially.

1. We use the same notations as in [2] as possible. By A we mean a continuous finite factor acting on a separable Hilbert space and by $\widetilde{\mathfrak{A}}$ the group of all *-automorphisms of A. Denote by K the group of all inner automorphisms of A. K is a normal subgroup of $\widetilde{\mathfrak{A}}$. Put \mathfrak{A} the quotient group $\widetilde{\mathfrak{A}}/K$. We take up an enumerable subgroup G of \mathfrak{A} . We call G a group of automorphism classes. For every element $\alpha \in G$ we choice a representative $\overline{\alpha}$ in the coset α of the quotient $\widetilde{\mathfrak{A}}/K$, then for every α and β there occurs $m_{\alpha,\beta} \in K$ such that $\overline{\alpha} \cdot \overline{\beta} = \overline{\alpha} \overline{\beta} \cdot m_{\alpha,\beta}$. This satisfies relations:

(1)
$$(k^{\alpha})^{\beta} = (k^{\alpha\beta})^{m_{\alpha},\beta}$$
 for $k \in K$

$$(2) m_{\alpha,\beta\gamma}m_{\beta,\gamma} = m_{\alpha\beta,\gamma}m_{\alpha}^{\gamma}$$

where $k^{\alpha} = \overline{\alpha}^{-1}k\overline{\alpha}$ and $k^{m} = m^{-1}km$ $(m \in K)$. We call such a system $\{m_{\alpha,\beta}\}$ a factor set of inner automorphisms of A. If a factor set $\{m_{\alpha,\beta}\}$ satisfies $m_{\alpha,\alpha^{-1}}=1$ for every α , it is normalized. In this paper we consider only such a group for which normalized factor sets exist. For a factor set $\{m_{\alpha,\beta}\}$, we get an extension K of the group K by G, which we show by $K = (K, G, m_{\alpha,\beta})$ [1, 2].

Let $K^{(1)} = (K, G, m^{(1)}_{\alpha,\beta})$ and $K^{(2)} = (K, G, m^{(2)}_{\alpha,\beta})$ be two extensions of a group K by a group G with respect to different factor sets $\{m^{(1)}_{\alpha,\beta}\}$ and $\{m^{(2)}_{\alpha,\beta}\}$ respectively. If there is an isomorphism between $K^{(1)}$ and $K^{(2)}$ satisfying

(i) $1 \otimes k \in K^{(1)} \leftrightarrow 1 \otimes k \in K^{(2)}$ (i.e. the identity mapping on K) (ii) $\alpha \otimes k \in K^{(1)} \leftrightarrow \alpha \otimes h \in K^{(2)}$.

these extensions are said equivalent. It is known that $K^{(1)}$ is equivalent to $K^{(2)}$ if and only if there exists $n_{\alpha} \in K$ ($\alpha \in G$) such that (3) $\overline{\alpha}_{(2)} = \overline{\alpha}_{(1)} n_{\alpha}, \quad m^{(3)}_{\alpha,\beta} = n^{-1}_{\alpha\beta} m^{(1)}_{\alpha,\beta} n^{\beta}_{\alpha} n_{\beta}$

(where $n_{\alpha}^{\beta} = \overline{\beta}_{(1)}^{-1} n_{\alpha} \overline{\beta}_{(1)}$). Hence we say that two factor sets are equivalent with each other if they are connected by the relations (3).

For an inner automorphism k of A, there is a unitary operator $v \in A$ such that $x^k = v^*xv$ $(x \in A)$, but this v is not determined uniquely. Every unitary operator w satisfying $w^*v = \chi \cdot 1$ (χ is a complex number) induces the same inner automorphism k.

Now let $v_{\alpha,\beta}$ be a unitary operator in A which induces the inner automorphism $m_{\alpha,\beta}$, then by (2) we get in general

$$(4) v_{\alpha,\beta\gamma}v_{\beta,\gamma}\cdot\chi(\alpha,\beta,\gamma)=v_{\alpha\beta,\gamma}v_{\alpha,\beta}^{\gamma}$$

(where $\chi(\alpha, \beta, \gamma)$ is a complex number such that $|\chi(\alpha, \beta, \gamma)|=1$). If $v_{\alpha,\beta}$ is suitably chosen to satisfy

(5) $\chi(\alpha, \beta, \gamma) = 1, \quad v_{1,1} = 1, \quad v_{\alpha,\alpha^{-1}} = v_{\alpha^{-1},\alpha} = \lambda_{\alpha} 1$

for every α , β , γ (λ_{α} is a complex number), we call $\{v_{\alpha,\beta}\}$ a normalized factor set of unitary operators of A. Using such a normalized factor set, we are able to construct an extension $A = (A, G, v_{\alpha,\beta})$ of the factor A, which admits a group of inner automorphisms isomorphic to $K = (K, G, m_{\alpha,\beta})$ [2].

2. For any case does there appear a normalized factor set of unitary operators? We discuss it in this section.

Let Z be the unit circle of the complex plane and we assume that G acts trivially on Z, i.e. $z^{\alpha} = z$ for every $z \in Z$ and $\alpha \in G$. Put $C^{3}(G, Z)$ the group of 3-dimensional cocycles on G with values in Z^{*} and by $B^{3}(G, Z)$ we show the subgroup of coboundaries of 2-dimensional cochains, that is, the collection of cocycles $\varphi(\alpha, \beta, \gamma)$ which may be expressed as

$$\varphi(\alpha, \beta, \gamma) = \frac{f(\alpha\beta, \gamma)f(\alpha, \beta)}{f(\alpha, \beta\gamma)f(\beta, \gamma)}$$

by a Z-valued function $f(\alpha, \beta)$ on $G \times G$. The quotient group $C^{3}(G, Z)/B^{3}(G, Z)$ is usually called the *third cohomology group*.

LEMMA 1. The element of the third cohomology group which contains the cocycle $\chi(\alpha, \beta, \gamma)$ in (4) depends upon only G and is independent from the choice of representatives $\overline{\alpha}$ and unitary operators $v_{\alpha,\beta}$.

Proof. Let $\overline{\alpha}$ be a representative of $\alpha \in G$ and $\overline{\alpha}'$ be another one then there is an element n_{α} in K such that $\overline{\alpha}' = \overline{\alpha} n_{\alpha}$ and we get

216

^{*)} A Z-valued function $\varphi(\alpha, \beta, \gamma)$ on $G \times G \times G$ is a cocycle if it satisfies $\varphi(\beta, \gamma, \delta) \cdot \varphi(\alpha, \beta, \gamma, \delta) = \varphi(\alpha, \beta, \gamma) / \varphi(\alpha\beta, \gamma, \delta) = \varphi(\alpha, \beta, \gamma) = 1$ for every $\alpha, \beta, \gamma, \delta$. $\chi(\alpha, \beta, \gamma) = \varphi(\alpha, \beta,$

$$\overline{\alpha}' \cdot \overline{\beta}' = \overline{\alpha} n_{\alpha} \cdot \overline{\beta} n_{\beta} = \overline{\alpha} \overline{\beta} \cdot m_{\alpha,\beta} n_{\alpha}^{\beta} n_{\beta} = \overline{\alpha} \overline{\beta}' \cdot n_{\alpha\beta}^{-1} m_{\alpha,\beta} n_{\alpha}^{\beta} n_{\beta}.$$

We show by $a^{\alpha'}$ the image of a by the automorphism $\overline{\alpha'}$. Put w_{γ} the unitary operator which induces the inner automorphism n_{γ} then $w^*_{\alpha\beta}v_{\alpha,\beta}w^{\beta}_{\alpha}w_{\beta}$ induces $n^{-1}_{\alpha\beta}m_{\alpha,\beta}n^{\beta}_{\alpha}n_{\beta}$. Put $v'_{\alpha,\beta} = w^*_{\alpha\beta}v_{\alpha,\beta}w^{\beta}_{\alpha}w_{\beta}$ then $w_{\alpha\beta}v'_{\alpha,\beta} = v_{\alpha,\beta}w^{\beta}_{\alpha}w_{\beta} = v_{\alpha,\beta}w^{\beta}_{\alpha}w_{\beta} = v_{\alpha,\beta}w^{\beta}_{\alpha}w^{\beta}_{\alpha}$ and

$$w_{\alpha\beta\tau}v'_{\alpha\beta,\tau}[v'_{\alpha,\beta}]^{r'} = v_{\alpha\beta,\tau}w_{\tau}w_{\alpha\beta}^{r'}[v'_{\alpha,\beta}]^{r'} = v_{\alpha\beta,\tau}w_{\tau}[w_{\alpha\beta}v'_{\alpha,\beta}]^{r'}$$

$$= v_{\alpha\beta,\tau}w_{\tau}[v_{\alpha,\beta}w_{\beta}w_{\alpha}^{\beta'}]^{r'} = v_{\alpha\beta,\tau}w_{\tau}v_{\alpha,\beta}^{r'}[w_{\beta}w_{\alpha}^{\beta'}]^{r'}$$

$$= v_{\alpha\beta,\tau}v_{\alpha,\beta}^{r}w_{\tau}[w_{\beta}w_{\alpha}^{\beta'}]^{r'} = v_{\alpha,\beta\tau}v_{\beta,\tau}\chi(\alpha,\beta,\gamma)w_{\tau}w_{\beta}^{r'}(w_{\alpha}^{\beta'})^{r'}$$

$$= v_{\alpha,\beta\tau}w_{\beta\tau}v'_{\beta,\tau}(w_{\alpha}^{\beta'})^{r'}\chi(\alpha,\beta,\gamma) = v_{\alpha,\beta\tau}w_{\beta\tau}w_{\alpha}^{(\beta\tau)'}v'_{\beta,\tau}\chi(\alpha,\beta,\gamma)$$

$$= w_{\alpha\beta\tau}v'_{\alpha,\beta\tau}v'_{\beta,\tau}\chi(\alpha,\beta,\gamma).$$

This means $v'_{\alpha,\beta\gamma}v'_{\alpha,\beta}=v'_{\alpha,\beta\gamma}v'_{\beta,\gamma}\cdot\chi(\alpha,\beta,\gamma)$. That is, we know that if we employ a suitably chosen system of unitary operators $\{v_{\alpha,\beta}\}$ and $\{v'_{\alpha,\beta}\}$, there appears the same cocycle $\chi(\alpha,\beta,\gamma)$ corresponding to different systems of representatives $\{\overline{\alpha}\}$ and $\{\overline{\alpha'}\}$.

Next we fix a system of automorphisms $\{\overline{\alpha}\}\$, then inner automorphisms $m_{\alpha,\beta}$ are determined consequently. If $\{v_{\alpha,\beta}\}$ is a system of unitary operators such that each $v_{\alpha,\beta}$ induces the inner automorphism $m_{\alpha,\beta}$ of A and $\{v'_{\alpha,\beta}\}$ is another such a system, there occurs a 2-dimensional cochain $f(\alpha,\beta)$ with values in Z to satisfy $v'_{\alpha,\beta}=f(\alpha,\beta)v_{\alpha,\beta}$. Then by

$$v_{\alpha,\beta\gamma}v_{\beta,\gamma}\chi(\alpha,\beta,\gamma) = v_{\alpha\beta,\gamma}v_{\alpha,\beta}^{\gamma}, \quad v_{\alpha,\beta\gamma}^{\prime}v_{\beta,\gamma}^{\prime}\chi^{\prime}(\alpha,\beta,\gamma) = v_{\alpha\beta,\gamma}^{\prime}v_{\alpha,\beta}^{\prime},$$

we get

$$\chi'(\alpha, \beta, \gamma) = \frac{f(\alpha\beta, \gamma)f(\alpha, \beta)}{f(\alpha, \beta\gamma)f(\beta, \gamma)}\chi(\alpha, \beta, \gamma).$$

This means that the cocycles $\chi(\alpha, \beta, \gamma)$ and $\chi'(\alpha, \beta, \gamma)$ are cohomologous. Combining with the first step of proof we get the conclusion.

THEOREM 1. A normalized factor set of unitary operators is associated to a group G if and only if the cocycle $\chi(\alpha, \beta, \gamma)$ in (4) for arbitrarily chosen $\{v_{\alpha,\beta}\}$ is a coboundary.

Proof. If a normalized factor set $\{v_{\alpha,\beta}\}$ is associated for suitably chosen $\{\overline{\alpha}\}$ and $\{m_{\alpha,\beta}\}$, then $\chi(\alpha,\beta,\gamma)\equiv 1$. Thus if we put $f(\alpha,\beta)=1$ for every pair α,β

$$\chi(\alpha, \beta, \gamma) \equiv \frac{f(\alpha\beta, \gamma)f(\alpha, \beta)}{f(\alpha, \beta\gamma)f(\beta, \gamma)}$$

Hence by Lemma 1, the condition is necessary.

On the contrary, we assume that $\chi(\alpha, \beta, \gamma)$ satisfies the condition stated in the theorem. Put $v'_{\alpha,\beta} = 1/f(\alpha, \beta) \cdot v_{\alpha,\beta}$ then

$$\chi'(\alpha,\beta,\gamma) = \frac{f(\alpha,\beta\gamma)f(\beta,\gamma)}{f(\alpha\beta,\gamma)f(\alpha,\beta)}\chi(\alpha,\beta,\gamma) \equiv 1.$$

Hence $v'_{\alpha,\beta\tau}v'_{\beta,\tau} = v'_{\alpha\beta,\tau}v'_{\alpha,\beta}$, especially $v'_{\alpha,1} = v'_{1,1}$, $v'_{1,\alpha} = v'_{1,1}$. We may assume $v'_{1,1} = 1$. Furthermore, since

217

Z. TAKEDA

$$\frac{f(\alpha, 1)f(\alpha^{-1}, \alpha)}{f(1, \alpha)f(\alpha, \alpha^{-1})}\chi(\alpha, \alpha^{-1}, \alpha) = 1,$$

$$v_{\alpha,1}v_{\alpha^{-1},\alpha}\frac{f(1, \alpha)f(\alpha, \alpha^{-1})}{f(\alpha, 1)f(\alpha^{-1}, \alpha)} = v_{1,\alpha}v_{\alpha,\alpha^{-1}}^{\alpha},$$

$$v_{\alpha,1}'v_{\alpha^{-1},\alpha}' = v_{1,\alpha}'v_{\alpha,\alpha^{-1}}' \text{ i.e. } v_{\alpha^{-1},\alpha}' = v_{\alpha,\alpha^{-1}}' = \lambda_{\alpha}$$

because $m_{\alpha,\alpha^{-1}} = m_{\alpha^{-1},\alpha} = 1$. Hence $\{v'_{\alpha,\beta}\}$ is a normalized factor set of unitary operators satisfying the required condition.

3. Hereafter we treat only groups G for which the condition of Theorem 1 is satisfied. Hence we may assume the existence of both extensions of A and of K by G. We show the uniqueness of the extension of K within equivalences.

LEMMA 2. The group K of all inner automorphisms of a finite factor A has no central element other than the identity.

Proof. Let k be a central element of K, that is, kh=hk for every $h \in K$. Put u_k , u_h the unitary operators which induces k, h respectively. Then $u_h^* u_k^* x u_k u_h = u_k^* u_h^* x u_h u_k$ for every $x \in A$. Hence we get $u_h u_k u_h^* u_k^* = \lambda_h 1$ (λ_h is a complex number) and so $u_k^* u_h u_k = \lambda_h u_h$. For the trace τ of A, $\tau(u_h) = \tau(u_k^* u_h u_k) = \lambda_h \tau(u_h)$. Thus if $\tau(u_h) \neq 0$, $\lambda_h = 1$ i.e. $u_h u_k = u_k u_h$.

Now let $e \in A$ be a projection such that $\tau(e) \neq \frac{1}{2}$, then 2e-1 is a unitary operator and $\tau(2e-1) \neq 0$. Hence $(2e-1)u_k = u_k(2e-1)$ i.e. $e = u_k^* e u_k$. If $\tau(e) = \frac{1}{2}$, there are two projections e_1, e_2 satisfying $e = e_1 + e_2$, $e_1 \sim e_2$, $e_1 \perp e_2$, $e_1 = u_k^* e_1 u_k$ and $e_2 = u_k^* e_2 u_k$. That is $u_k^* e u_k = e$, and so k preserves invariant every projection of A. This means that k is the identity automorphism.

COROLLARY. The extension of K is determined uniquely by G within equivalences.

This follows from Lemma 2 and the general theory of group extensions $[1, \S 52$ Extensions of group without centre].

4. By the above corollary, we know that each normalized factor set of inner automorphisms associated to G is always equivalent to another one. Thus two factor sets $\{m_{\alpha,\beta}^{(1)}\}$ and $\{m_{\alpha,\beta}^{(2)}\}$ such that

$$\overline{\alpha} \cdot \overline{\beta} = \overline{\alpha} \overline{\beta} \cdot m_{\alpha,\beta}^{(1)}, \qquad \overline{\alpha}' \cdot \overline{\beta}' = \overline{\alpha} \overline{\beta}' \cdot m_{\alpha,\beta}^{(3)}, m_{\alpha,\beta\gamma}^{(1)} \cdot m_{\beta,\gamma}^{(1)} = m_{\alpha\beta,\gamma}^{(1)} \cdot m_{\alpha,\beta}^{(1)\gamma}, \qquad m_{\alpha,\beta\gamma}^{(2)} m_{\beta,\gamma}^{(2)} = m_{\alpha\beta,\gamma}^{(2)} m_{\alpha,\beta}^{(2)\gamma},$$

are connected by

 $\overline{\alpha}' = \overline{\alpha} n_{\alpha} (n_{\alpha} \in K), \qquad m_{\alpha,\beta}^{(3)} = n_{\alpha\beta}^{-1} m_{\alpha,\beta}^{(1)} n_{\alpha}^{\beta} n_{\alpha}.$

Denote by $\{v_{\alpha,\beta}^{(1)}\}\$ and $\{v_{\alpha,\beta}^{(2)}\}\$ the normalized factor sets of unitary operators corresponding $\{m_{\alpha,\beta}^{(1)}\}\$ and $\{m_{\alpha,\beta}^{(2)}\}\$ respectively and by w_{α} the unitary operator which induces n_{α} , then we get the relation

(6)
$$v_{\alpha,\beta}^{(2)} = \psi(\alpha,\beta) w_{\alpha\beta}^* v_{\alpha,\beta}^{(1)} w_{\alpha}^{\beta} w_{\beta},$$

where $\psi(\alpha, \beta)$ is a two-dimensional cochain on G with values in Z.

LEMMA 3. $\psi(\alpha, \beta)$ is a two-dimensional cocycle, that is, it holds the equality $\psi(\alpha, \beta\gamma)\psi(\beta, \gamma)=\psi(\alpha\beta, \gamma)\psi(\alpha, \beta)$ for every α, β, γ .

Proof. By the assumption

 $\begin{aligned} v_{\alpha,\beta\gamma}^{(2)} = \psi(\alpha,\,\beta\gamma) w_{\alpha\beta\gamma}^* v_{\alpha,\beta\gamma}^{(1)} w_{\alpha}^{\beta\gamma} w_{\beta\gamma}^{\alpha} \\ v_{\beta,\gamma}^{(2)} = \psi(\beta,\gamma) w_{\beta\gamma}^* v_{\beta,\gamma}^{(1)} w_{\beta}^* w_{\gamma} \\ v_{\alpha\beta,\gamma}^{(2)} = \psi(\alpha\beta,\gamma) w_{\alpha\beta\gamma}^* v_{\alpha\beta,\gamma}^{(1)} w_{\alpha\beta}^* w_{\gamma} \\ v_{\alpha,\beta}^{(3)\gamma'} = w_{\gamma}^* v_{\alpha,\beta}^{(3)\gamma} w_{\gamma} = w_{\gamma}^* (\psi(\alpha,\,\beta) w_{\alpha\beta}^* v_{\alpha,\beta}^{(1)} w_{\alpha}^{\beta} w_{\beta})^{\gamma} w_{\gamma}. \end{aligned}$ Since $v_{\alpha,\beta\gamma}^{(1)} v_{\beta,\gamma}^{(1)} = v_{\alpha\beta,\gamma}^{(1)} v_{\alpha,\beta\gamma}^{(2)}, v_{\alpha\beta\gamma}^{(2)} = v_{\alpha\beta,\gamma}^{(2)} v_{\alpha\beta,\beta}^{(2)\gamma'}, w_{\alpha\beta\beta}^{(2)\gamma'} = v_{\alpha\beta,\gamma}^{(2)} v_{\alpha\beta,\beta}^{(2)\gamma'}, w_{\alpha\beta\beta}^{(2)\gamma'} = v_{\alpha\beta,\gamma}^{(2)} v_{\alpha\beta,\beta}^{(2)\gamma'} = v_{\alpha\beta,\gamma}^{(2)} v_{\alpha\beta,\gamma}^{(2)\gamma'} = v_{\alpha\beta,\gamma}^{(2)} v_{\alpha\beta,\gamma}^{(2)} = v_{\alpha\beta,\gamma}^{(2)} v_{\alpha\beta,\gamma}^{(2)\gamma'} = v_{\alpha\beta,\gamma}^{(2)} v_{\alpha\beta,\gamma}^{(2)} = v_$

In the equality $\psi(\alpha, \beta\gamma)\psi(\beta, \gamma)=\psi(\alpha\beta, \gamma)\psi(\alpha, \beta)$ putting $\alpha=1, \beta=1$ and $\gamma=\alpha$, we get $\psi(1, \alpha)=\psi(1, 1)$, for $\beta=1, \gamma=1$ or $\beta=\alpha^{-1}, \gamma=\alpha, \psi(\alpha, 1)=\psi(1, 1)$ or $\psi(\alpha^{-1}, \alpha)=\psi(\alpha, \alpha^{-1})$ respectively. Thus if $\{v_{\alpha,\beta}\}$ is a normalized factor set of unitary operators and $\psi(\alpha, \beta)$ is a cocycle satisfying $\psi(1, 1)=1$, then $\{\psi(\alpha, \beta)v_{\alpha,\beta}\}$ is a normalized factor set of unitary operators again. We notice too that the element of the second cohomology group $H^2(G, Z)$ which contains the cocycle $\psi(\alpha, \beta)$ is independent of the choice of w_{α} , because if $w'_{\alpha}=\rho(\alpha)w_{\alpha} \ \rho(\alpha)\in Z$, the corresponding $\psi'(\alpha, \beta)$ determined for w'_{α} satisfies $\psi(\alpha, \beta)=\psi'(\alpha, \beta)$.

Similarly as for extensions of a group we define an equivalence relation for extensions of a factor. Let $A^{(1)} = (A, G, v_{\alpha,\beta}^{(1)})$ and $A^{(2)} = (A, G, v_{\alpha,\beta}^{(2)})$ be two extensions of a factor A by a group G with respect to factor sets of unitary operators $\{v_{\alpha,\beta}^{(1)}\}$ and $\{v_{\alpha,\beta}^{(2)}\}$ respectively and $D^{(1)}, D^{(2)}$ be the algebraic crossed products for each case [2]. If there is a *-isomorphism between $D^{(1)}$ and $D^{(2)}$ satisfying

- (i) $1 \otimes a \in D^{(1)} \leftrightarrow 1 \otimes a \in D^{(2)}$ i.e. the identity mapping on A,
- (ii) $\alpha \otimes a \in D^{(1)} \leftrightarrow \alpha \otimes b \in D^{(2)}$
- (iii) $\tau^{(1)}((\alpha \otimes a)(\beta \otimes b)^*) = \tau^{(2)}((\alpha \otimes c)(\beta \otimes d)^*)$ if $\alpha \otimes a \leftrightarrow \alpha \otimes c$ and $\beta \otimes b \leftrightarrow \beta \otimes d$,

(where $\tau^{(1)}$, $\tau^{(2)}$ are the traces of $A^{(1)}$, $A^{(2)}$ respectively), we call $A^{(1)}$ and $A^{(2)}$ are equivalent extensions of the factor A.

LEMMA 4. Two extensions $A^{(1)}$, $A^{(2)}$ of a continuous finite factor A by a group G with respect to normalized factor sets $\{v_{\alpha,\beta}^{(1)}\}$ and $\{v_{\alpha,\beta}^{(2)}\}$ are equivalent if and only if the cocycle $\psi(\alpha, \beta)$ in (6) is a coboundary.

Proof. Necessity. If $A^{(2)}$ is equivalent to $A^{(1)}$, $\alpha \otimes 1 \in A^{(2)}$ is mapped to $\alpha \otimes u_{\alpha} \in A^{(1)}$. Since $\alpha \otimes 1$ is a unitary operator in $A^{(2)}$ $\alpha \otimes u_{\alpha}$ is a unitary operator and so u_{α} is a unitary operator in A. $\alpha \otimes a_{\alpha} = (\alpha \otimes 1)(1 \otimes a_{\alpha})$ is mapped to $(\alpha \otimes u_{\alpha})(1 \otimes a_{\alpha}) = \alpha \otimes u_{\alpha}a_{\alpha}$. Hence

$$(\alpha \otimes 1)(\beta \otimes 1) \to (\alpha \otimes u_{\alpha})(\beta \otimes u_{\beta}) = \alpha \beta \otimes v_{\alpha,\beta}^{(1)} u_{\beta}^{\beta} u_{\beta}$$

On the other hand

$$(\alpha \otimes 1)(\beta \otimes 1) = \alpha \beta \otimes v_{\alpha,\beta}^{(2)} \to \alpha \beta \otimes u_{\alpha\beta}v_{\alpha,\beta}^{(2)}.$$

Thus we get

$$v_{\alpha,\beta}^{(2)} = u_{\alpha\beta}^* v_{\alpha,\beta}^{(1)} u_{\alpha}^{\beta} u_{\beta}.$$

q.e.d.

This shows $\psi(\alpha, \beta) \equiv 1$. Therefore the cocycle $\psi(\alpha, \beta)$ which appears in (6) for other different choice of $\{w_{\alpha}\}$ is a coboundary.

Sufficiency. If $\psi(\alpha, \beta)$ is a coboundary,

 $v_{\alpha,\beta}^{(2)} = (\rho(\alpha)\rho(\beta)/\rho(\alpha\beta))u_{\alpha\beta}^*v_{\alpha,\beta}^{(1)}u_{\alpha}^\beta u_{\beta}.$

We replace $\rho(\alpha)u_{\alpha}$, $\rho(\beta)u_{\beta}$, $\rho(\alpha\beta)u_{\alpha\beta}$ with u_{α} , u_{β} , $u_{\alpha\beta}$ respectively, then the above equality changes to

$$v_{\alpha,\beta}^{(2)} = u_{\alpha\beta}^* v_{\alpha,\beta}^{(1)} u_{\alpha}^{\beta} u_{\beta}.$$

We may define a linear mapping from $D^{(2)}$ into $D^{(1)}$ such that $\alpha \otimes a \in D^{(2)} \rightarrow \alpha \otimes u_a a \in D^{(1)}$.

Clearly this is one-to-one and maps $D^{(2)}$ onto $D^{(1)}$. Since $u_1=1$, the mapping is identity on A and preserves multiplication and *-operation. $(\alpha \otimes a_{\alpha})(\beta \otimes b_{\beta}) = \alpha \beta \otimes v_{\alpha,\beta}^{(2)} a_{\alpha}^{\beta'} b_{\beta} \rightarrow \alpha \beta \otimes u_{\alpha\beta} v_{\alpha,\beta}^{(2)} u_{\beta}^{\beta} a_{\alpha}^{\beta} u_{\beta} b_{\beta} = \alpha \beta \otimes v_{\alpha,\beta}^{(1)} u_{\alpha}^{\beta} a_{\alpha}^{\beta} u_{\beta} b_{\beta}.$

On the other hand $\alpha \otimes a_{\alpha} \rightarrow \alpha \otimes u_{\alpha}a_{\alpha}$, $\beta \otimes b_{\beta} \rightarrow \beta \otimes u_{\beta}b_{\beta}$ and

 $(\alpha \otimes u_{\alpha}a_{\alpha})(\beta \otimes u_{\beta}b_{\beta}) = \alpha \beta \otimes v_{\alpha,\beta}^{(1)}(u_{\alpha}a_{\alpha})^{\beta}u_{\beta}b_{\beta} = \alpha \beta \otimes v_{\alpha,\beta}^{(1)}u_{\alpha}^{\beta}a_{\alpha}^{\beta}u_{\beta}b_{\beta}.$

Hence multiplication is preserved.

 $\begin{aligned} & (\alpha \otimes a)^* = \alpha^{-1} \otimes a^{(\alpha^{-1})'*} v_{\alpha,\alpha^{-1}}^{(2)*} \to \alpha^{-1} \otimes u_{\alpha^{-1}} a^{(\alpha^{-1})'*} v_{\alpha,\alpha^{-1}}^{(2)*} = \alpha^{-1} \otimes a^{\alpha^{-1}*} u_{\alpha^{-1}} v_{\alpha,\alpha^{-1}}^{(2)*}, \\ & \alpha \otimes a \to \alpha \otimes u_a a \text{ and } (\alpha \otimes u_a a)^* = \alpha^{-1} \otimes (u_a a)^{\alpha^{-1}*} v_{\alpha,\alpha^{-1}}^{(1)*} = \alpha^{-1} \otimes a^{\alpha^{-1}*} u_\alpha^{\alpha^{-1}*} v_{\alpha,\alpha^{-1}}^{(1)*}. \\ & \text{Since } v_{\alpha,\alpha^{-1}}^{(2)*} = u_{\alpha^{-1}}^* u_\alpha^{\alpha^{-1}*} v_{\alpha,\alpha^{-1}}^{(1)*} u_1 \text{ and } u_1 = 1, \text{ the mapping preserves } * \bullet \text{operation. The condition (iii) concerning the traces remains valid doubtless. Therefore <math>A^{(2)}$ is equivalent to $A^{(1)}$. q.e.d.

Since the factor group $H^2(G, Z) = C^2(G, Z)/B^2(G, Z)$ is known as the second cohomology group, we get

THEOREM 2. If it is possible to construct extensions of a continuous finite factor A by a group G of automorphism classes, then the equivalent classes of those extensions correspond one-to-one to the second cohomology group $H^2(G, Z)$.

References

- [1] A. G. Kurosh: The Theory of Groups, 2, Chap. XII (1956).
- [2] M. Nakamura and Z. Takeda: On the extensions of finite factors. I, Proc. Japan Acad., 35, 149-154 (1959).