47. On the Spectral-resolutions of Quasi-compact Elements in a B^{*}-algebra

By Yoshimichi Mibu
(Comm. by K. Kunugi, m.J.A., May 7, 1959)

Let \mathfrak{B} be a complex Banach algebra . with unit element e. We shall consider the inverse of $\lambda e-a$ as a function of λ for a fixed $a \in \mathfrak{B}$. According as $\lambda e-a$ is regular or singular in \mathfrak{B}, we say that λ belongs to the resolvent set $\rho(a)$ or the spectrum $\sigma(a)$ of a. And a non-void set σ is called a spectral set of a if σ is a subset of $\sigma(a)$ and σ is both open and closed in $\sigma(a)$. For λ in $\rho(a)$ the inverse of $\lambda e-a$ exists; it is denoted by $R(\lambda ; a)$ and is called the resolvent of a. It is well known that the resolvent set $\rho(a)$ of a is open and in each of its components $R(\lambda ; a)$ is a regular function of λ. The following theorem is proved in [1, pp. 105-107 (Theorems 5.11.1 and 5.11.2)].

Theorem A. Let $\sigma(a)=\bigcup_{i=1}^{n} \sigma_{i}$ where each σ_{i} is a spectral set of a and $\sigma_{i \frown} \sigma_{j}=0$ when $i \neq j$. Let us suppose that closed Jordan curves $\Gamma_{i}, i=1,2, \cdots, n$, satisfy the following conditions:
(i) For each $i(1 \leqq i \leqq n) \sigma_{i}$ is contained in the open domain \mathfrak{D}_{i} which is bounded by Γ_{i}.
(ii) $\mathfrak{D}_{i \frown} \mathfrak{D}_{j}=0$ when $i \neq j$.
(iii) Each Γ_{i} has the positive orientation, that is, the domain \mathfrak{D}_{i} lies to the left of Γ_{i}.
If we define

$$
\begin{equation*}
J_{i}=\frac{1}{2 \pi i} \int_{\Gamma_{i}} R(\zeta ; \alpha) d \zeta \quad \text { and } \quad a_{i}=J_{i} a, i=1,2, \cdots, n, \tag{1}
\end{equation*}
$$

then

$$
\begin{equation*}
\sum_{i=1}^{n} J_{i}=e, \quad J_{i}^{2}=J_{i}, \quad J_{i} J_{j}=\theta, \quad i \neq j, \quad J_{i} \neq \theta, e, \quad \sum_{i=1}^{n} a_{i}=a . \tag{2}
\end{equation*}
$$

Furthermore, the spectrum $\sigma\left(a_{i}\right)$ of α_{i} is σ_{i} in addition to $\lambda=0$, that is, $\sigma\left(a_{i}\right)=\sigma_{i} \smile\{0\}$. In particular, if σ_{i} is a single point λ_{i}, then an element $J_{i}\left(a-\lambda_{i} e\right)$ is quasi-nilpotent (or nilpotent).

First, under the assumption that \mathfrak{B} is a commutative B^{*}-algebra (see Definition 1 below), we shall extend the above theorem to a case in which the spectrum $\sigma(a)$ of a consists of infinitely many components. Next, by using this extension, we shall offer a new proof for the spectral resolution theorem of compact normal operators in Hilbert spaces.

Definition 1. A Banach algebra \mathfrak{B} in which every element a has an adjoint a^{*} with $(\alpha a+\beta b)^{*}=\bar{\alpha} a^{*}+\bar{\beta} b^{*},(a b)^{*}=b^{*} a^{*}, \quad a^{* *}=a$, and
$\left\|a^{*} a\right\|=\|a\|^{2}$ is called a B^{*}-algebra (see [1, p. 499]).
Lemma 1. If a is an element in a B^{*}-algebra \mathfrak{B} such that $a^{*} a$ $=a a^{*}$, then we have $\lim _{n \rightarrow \infty}\left\|a^{n}\right\|^{1 / n}=\|a\|$. Hence any commutative B^{*}-algebra has no quasi-nilpotent element except for θ.

The proof is omitted.
Definition 2. Let \mathfrak{B} be a Banach algebra with unit element e. An element $a \in \mathfrak{B}$ is called a quasi-compact element if the spectrum $\sigma(\alpha)$ consists of finite points or an infinitely many points $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}, \cdots$ such that $\lim _{n \rightarrow \infty} \lambda_{n}=0$.

Lemma 2. Let \mathfrak{B} be a commutative B^{*}-algebra with unit element e and a an element in \mathfrak{B}. If $R(\lambda ; a)$ is regular for $|\lambda|>R$, then we have $\|a\| \leqq R$.

Proof. Since $R(\lambda ; a)=(\lambda e-a)^{-1}=\lambda^{-1}(e-a / \lambda)^{-1}$, we have easily

$$
\begin{equation*}
R(\lambda ; a)=e \lambda^{-1}+\sum_{1}^{\infty} a^{n} \lambda^{-n-1} \quad \text { for }|\lambda|>\|a\| . \tag{3}
\end{equation*}
$$

On the other hand, the right hand of the above equation is convergent for $|\lambda|>\lim _{n \rightarrow \infty}\left\|a^{n}\right\|^{1 / n}$ and is divergent for $|\lambda|<\lim _{n \rightarrow \infty}\left\|a^{n}\right\|^{1 / n}$. This implies that $\{\lambda ;|\lambda|>R\} \subseteq\left\{\lambda ;|\lambda|>\lim _{n \rightarrow \infty}\left\|a^{n}\right\|^{1 / n}\right\}$, that is, $R \geqq \lim _{n \rightarrow \infty}\left\|a^{n}\right\|^{1 / n}=\|a\|$ (see Lemma 1). The lemma is thereby proved.

Theorem B. Let \mathfrak{B} be a commutative B^{*}-algebra with unit element e. If $a \in \mathfrak{B}$ is a quasi-compact element, a is expressible in the form

$$
\begin{equation*}
a=\sum_{i} \lambda_{i} J_{i} \tag{4}
\end{equation*}
$$

where J_{i} is an idempotent element with $J_{i} J_{j}=\theta, i \neq j$ and $\left\{\lambda_{1}, \lambda_{2}, \cdots\right\}$ is a finite set or an enumerable set such that $\lim _{n \rightarrow \infty} \lambda_{n}=0$.

Proof. Let $\left\{\lambda_{1}, \lambda_{2}, \cdots\right\}$ be the spectrum of a except for 0 . By the assumption of the lemma the set $\left\{\lambda_{1}, \lambda_{2}, \cdots\right\}$ is finite or enumerable (see Definition 2). Suppose that the spectrum $\sigma(a)$ is infinite. Without loss of generality we may assume that

$$
\begin{equation*}
\left|\lambda_{1}\right| \geqq\left|\lambda_{2}\right| \geqq \cdots \geqq\left|\lambda_{n}\right| \geqq \cdots \quad . \tag{5}
\end{equation*}
$$

We have clearly $\lim _{n \rightarrow \infty}\left|\lambda_{n}\right|=0$. Let Γ_{i} be the circle of center λ_{i} and radius ε_{i}, where ε_{i} is a positive number such that

We define

$$
\begin{equation*}
2 \varepsilon_{i}<\operatorname{Min}\left\{\inf _{j \neq i}\left|\lambda_{i}-\lambda_{j}\right|, \inf _{\left|\lambda_{j}\right| \neq\left|\lambda_{i}\right|}\left|\left(\left|\lambda_{i}\right|-\left|\lambda_{j}\right|\right)\right|\right\} . \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
J_{i}=\frac{1}{2 \pi i} \int_{\Gamma_{i}} R(\zeta ; a) d \zeta, \quad i=1,2, \cdots \tag{7}
\end{equation*}
$$

For an arbitrary number $\varepsilon>0$, there exists a natural number N such that
(8) $\quad\left|\lambda_{N}\right| \geqq \varepsilon, \quad\left|\lambda_{N+1}\right|<\varepsilon$.

We set $\delta=\left(\left|\lambda_{N}\right|+\left|\lambda_{N+1}\right|\right) / 2$ and let Γ_{δ} be the circle of center origin
and radius δ. We define

$$
\begin{equation*}
J_{\bar{\delta}}=\frac{1}{2 \pi i} \int_{\Gamma_{\delta}} R(\zeta ; a) d s \tag{9}
\end{equation*}
$$

In virtue of (6) we can easily see that

$$
\begin{equation*}
\mathfrak{D}_{\partial} \frown \mathfrak{D}_{i}=0, i=1,2, \cdots, N \quad \text { and } \quad \mathfrak{D}_{i \frown} \mathfrak{D}_{j}=0, i \neq j, \tag{10}
\end{equation*}
$$

where $\mathfrak{D}_{\dot{\delta}}$ and \mathfrak{D}_{i} are open domains which are bounded by Γ_{δ} and Γ_{i} respectively. Hence by Theorem A we have

$$
\begin{equation*}
J_{1}+J_{2}+\cdots+J_{N}+J_{\delta}=e\left(a=\sum_{i=1}^{N} J_{i} a+J_{\grave{\delta}} a\right), J_{i} J_{j}=\theta, i \neq j, \quad J_{i} J_{\grave{\delta}}=\theta \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
\sigma\left(J_{\dot{\partial}} a\right)=\left\{0, \lambda_{N+1}, \lambda_{N+2}, \cdots\right\} . \tag{12}
\end{equation*}
$$

It follows from (12), (8) and Lemma 2 that $\left\|J_{\delta} a\right\| \leqq \varepsilon$. This implies that $a=\sum_{i=1}^{\infty} J_{i} a$. Furthermore, from Theorem A $\bar{a}_{i}=J_{i}\left(a-\lambda_{i} e\right)$ is quasinilpotent (or nilpotent). Hence by Lemma $1 \bar{a}_{i}=J_{i}\left(\alpha-\lambda_{i} e\right)=\theta$, that is, $J_{i} a=\lambda_{i} J_{i}$. Consequently, we have $a=\sum_{i=1}^{\infty} \lambda_{i} J_{i}$. When $\sigma(a)$ is finite, we have similarly $a=\sum_{i=1}^{n} \lambda_{i} J_{i}$. Thus our theorem is completely proved.

Lemma 3. If E is a bounded normal operator in a Hilbert space \mathfrak{J} such that $E^{2}=E$, then E is the projection of \mathfrak{J} on some closed linear manifold \mathfrak{M}.

Proof. Let $H=E E^{*}\left(=E^{*} E\right)$. Then it is easily seen that $H^{*}=H$ and $H^{2}=H$. Hence H is the projection of \mathfrak{J} on some closed linear manifold \mathfrak{M}. We shall prove that $E=H$. For every $f \in \mathbb{M}$ we have $f=E E^{*} f$ and hence $E f=E\left(E E^{*} f\right)=E^{2} E^{*} f=E E^{*} f=f$. And for every $g \in \mathfrak{M}^{\perp}$ (orthogonal complement of \mathfrak{M}) we have $\|E g\|^{2}=(E g, E g)$ $=\left(E^{*} E g, g\right)=(H g, g)=(\theta, g)=0$, that is, $E g=0$. Consequently, the operator E coincides with the projection H of \mathfrak{J} on the closed linear manifold \mathfrak{M}.

Corollary to Theorem B. Let H be a compact normal operator in a Hilbert space \mathfrak{g}. Then H is expressed in the form

$$
\begin{equation*}
H=\sum_{i} \lambda_{i} E_{i} \tag{13}
\end{equation*}
$$

where E_{i} is a projection such that $E_{i} E_{j}=\theta, i \neq j$, and $\left\{\lambda_{1}, \lambda_{2}, \cdots\right\}$ is a finite set or an enumerable set such that $\lim _{n \rightarrow \infty} \lambda_{n}=0$.

Proof. Let $\mathfrak{E C}(\mathfrak{I})$ be the Banach algebra of endomorphisms of \mathfrak{g}. By corresponding to every $T \in \mathscr{C}(\mathfrak{g})$, as the adjoint of T, the adjoint operator of T, $\mathscr{C}(\mathfrak{g})$ becomes a B^{*}-algebra. Let $\left\{H, H^{*}\right\}^{\prime}$ be the set of all the operators $T \in \mathscr{C}(\mathfrak{g})$ such that T commutes with both H and H^{*}.
And let \mathfrak{B} be the set of all the operators $T \in \mathscr{F}(\mathfrak{y})$ such that T commutes with every operator belonging to the set $\left\{H, H^{*}\right\}^{\prime}$. Then we can easily see that \mathfrak{B} is a commutative B^{*}-algebra containing H and
H^{*}. Evidently any element in \mathfrak{B} is a bounded normal operator in \mathfrak{y}. Since H is a compact operator, we have from a theorem in Banach spaces (see [2, p. 166, Theorem 22]) the following:
(14) The set of all the proper values of the compact operator H is a finite set or an enumerable set $\left\{\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}, \cdots\right\}$ such that $\lim _{n \rightarrow \infty} \lambda_{n}=0$. And it is not hard to show that the following three conditions are mutually equivalent:
(i) $\lambda I-H$ has a bounded inverse operator with domain $\mathfrak{5}$, where I is the identity operator.
(ii) $\lambda I-H$ has, considered as an element in $\mathfrak{E}(\mathfrak{S})$, an inverse in $\mathfrak{E}(\mathfrak{I})$.
(iii) $\lambda I-H$ has, considered as an element in \mathfrak{B}, an inverse in \mathfrak{B}. Hence from above and (14) we see that H is, considered as an element in \mathfrak{B}, a quasi-compact element in \mathfrak{B}. According to Theorem \mathbf{B}, H is expressed in the form

$$
H=\sum_{i} \lambda_{i} E_{i}
$$

where E_{i} is an idempotent element with $E_{i} E_{j}=\theta, i \neq j$ and $\left\{\lambda_{1}, \lambda_{2}, \cdots\right\}$ is a finite set or an enumerable set such that $\lim _{n \rightarrow \infty} \lambda_{n}=0$. On the other hand it follows from Lemma 3 that E_{i} is a projection in $\mathfrak{5}$. Hence the corollary is completely proved.

References

[1] E. Hille: Functional Analysis and Semi-groups, New York (1946).
[2] S. Banach: Théorie des Opération Linéaires, Warszawa (1932).

