47. On the Spectral-resolutions of Quasi-compact Elements in a B*-algebra

By Yoshimichi MIBU

(Comm. by K. KUNUGI, M.J.A., May 7, 1959)

Let \mathfrak{B} be a complex Banach algebra with unit element e. We shall consider the inverse of $\lambda e - a$ as a function of λ for a fixed $a \in \mathfrak{B}$. According as $\lambda e - a$ is regular or singular in \mathfrak{B} , we say that λ belongs to the resolvent set $\rho(a)$ or the spectrum $\sigma(a)$ of a. And a non-void set σ is called a spectral set of a if σ is a subset of $\sigma(a)$ and σ is both open and closed in $\sigma(a)$. For λ in $\rho(a)$ the inverse of $\lambda e - a$ exists; it is denoted by $R(\lambda; a)$ and is called the resolvent of a. It is well known that the resolvent set $\rho(a)$ of a is open and in each of its components $R(\lambda; a)$ is a regular function of λ . The following theorem is proved in [1, pp. 105-107 (Theorems 5.11.1 and 5.11.2)].

Theorem A. Let $\sigma(a) = \bigcup_{i=1}^{n} \sigma_i$ where each σ_i is a spectral set of a and $\sigma_i \frown \sigma_j = 0$ when $i \neq j$. Let us suppose that closed Jordan curves Γ_i , $i=1, 2, \cdots, n$, satisfy the following conditions:

(i) For each $i(1 \leq i \leq n) \sigma_i$ is contained in the open domain \mathfrak{D}_i which is bounded by Γ_i .

(ii) $\mathfrak{D}_{i} \mathfrak{D}_{j} = 0$ when $i \neq j$.

(iii) Each Γ_i has the positive orientation, that is, the domain \mathfrak{D}_i lies to the left of Γ_i .

If we define

(1)
$$J_i = \frac{1}{2\pi i} \int_{\Gamma_i} R(\zeta; a) d\zeta \quad \text{and} \quad a_i = J_i a, \ i = 1, 2, \cdots, n,$$

then

(2)
$$\sum_{i=1}^{n} J_{i} = e, \quad J_{i}^{2} = J_{i}, \quad J_{i}J_{j} = \theta, \quad i \neq j, \quad J_{i} \neq \theta, e, \quad \sum_{i=1}^{n} a_{i} = a.$$

Furthermore, the spectrum $\sigma(a_i)$ of a_i is σ_i in addition to $\lambda=0$, that is, $\sigma(a_i)=\sigma_i \subset \{0\}$. In particular, if σ_i is a single point λ_i , then an element $J_i(a-\lambda_i e)$ is quasi-nilpotent (or nilpotent).

First, under the assumption that \mathfrak{B} is a commutative B^* -algebra (see Definition 1 below), we shall extend the above theorem to a case in which the spectrum $\sigma(a)$ of a consists of infinitely many components. Next, by using this extension, we shall offer a new proof for the spectral resolution theorem of compact normal operators in Hilbert spaces.

Definition 1. A Banach algebra \mathfrak{B} in which every element a has an adjoint a^* with $(\alpha a + \beta b)^* = \overline{\alpha} a^* + \overline{\beta} b^*$, $(ab)^* = b^* a^*$, $a^{**} = a$, and $||a^*a|| = ||a||^2$ is called a B^* -algebra (see [1, p. 499]).

Lemma 1. If a is an element in a B^* -algebra \mathfrak{B} such that $a^*a = aa^*$, then we have $\lim_{n \to \infty} ||a^n||^{1/n} = ||a||$. Hence any commutative B^* -algebra has no quasi-nilpotent element except for θ .

The proof is omitted.

Definition 2. Let \mathfrak{B} be a Banach algebra with unit element e. An element $a \in \mathfrak{B}$ is called a quasi-compact element if the spectrum $\sigma(a)$ consists of finite points or an infinitely many points $\lambda_1, \lambda_2, \dots, \lambda_n, \dots$ such that $\lim \lambda_n = 0$.

Lemma 2. Let \mathfrak{B} be a commutative B^* -algebra with unit element e and a an element in \mathfrak{B} . If $R(\lambda; a)$ is regular for $|\lambda| > R$, then we have $||a|| \leq R$.

Proof. Since
$$R(\lambda; a) = (\lambda e - a)^{-1} = \lambda^{-1} (e - a/\lambda)^{-1}$$
, we have easily
(3) $R(\lambda; a) = e\lambda^{-1} + \sum_{n=1}^{\infty} a^n \lambda^{-n-1}$ for $|\lambda| > ||a||$.

On the other hand, the right hand of the above equation is convergent for $|\lambda| > \lim_{n \to \infty} ||a^n||^{1/n}$ and is divergent for $|\lambda| < \lim_{n \to \infty} ||a^n||^{1/n}$. This implies that $\{\lambda; |\lambda| > R\} \subseteq \{\lambda; |\lambda| > \lim_{n \to \infty} ||a^n||^{1/n}\}$, that is, $R \ge \lim_{n \to \infty} ||a^n||^{1/n} = ||a||$ (see Lemma 1). The lemma is thereby proved.

Theorem B. Let \mathfrak{B} be a commutative B^* -algebra with unit element *e*. If $a \in \mathfrak{B}$ is a quasi-compact element, *a* is expressible in the form

$$(4) a = \sum \lambda_i J$$

where J_i is an idempotent element with $J_i J_j = \theta$, $i \neq j$ and $\{\lambda_1, \lambda_2, \cdots\}$ is a finite set or an enumerable set such that $\lim_{n \to \infty} \lambda_n = 0$.

Proof. Let $\{\lambda_1, \lambda_2, \dots\}$ be the spectrum of a except for 0. By the assumption of the lemma the set $\{\lambda_1, \lambda_2, \dots\}$ is finite or enumerable (see Definition 2). Suppose that the spectrum $\sigma(a)$ is infinite. Without loss of generality we may assume that

(5) $|\lambda_1| \ge |\lambda_2| \ge \cdots \ge |\lambda_n| \ge \cdots$. We have clearly $\lim_{n \to \infty} |\lambda_1| \ge 0$. Let Γ , be the circle of

We have clearly $\lim_{n \to \infty} |\lambda_n| = 0$. Let Γ_i be the circle of center λ_i and radius ε_i , where ε_i is a positive number such that

(6)
$$2\varepsilon_i < \operatorname{Min} \{ \inf_{j \neq i} | \lambda_i - \lambda_j |, \inf_{\lambda_j \mid \neq \mid \lambda_i \mid} | (|\lambda_i| - |\lambda_j|) | \}.$$

We define

(7)
$$J_i = \frac{1}{2\pi i} \int_{\Gamma_i} R(\zeta; a) d\zeta, \quad i = 1, 2, \cdots$$

For an arbitrary number $\varepsilon > 0$, there exists a natural number N such that

 $(8) \qquad |\lambda_N| \ge \varepsilon, \quad |\lambda_{N+1}| < \varepsilon.$

We set $\delta = (|\lambda_N| + |\lambda_{N+1}|)/2$ and let Γ_{δ} be the circle of center origin

No. 5] On the Spectral-resolutions of Quasi-compact Elements in a B^* -algebra 211

and radius δ . We define

$$(9) J_{\delta} = \frac{1}{2\pi i} \int_{\Gamma_{\delta}} R(\zeta; a) \, ds.$$

In virtue of (6) we can easily see that

(10) $\mathfrak{D}_{i} \supset \mathfrak{D}_{i} = 0, i = 1, 2, \dots, N \text{ and } \mathfrak{D}_{i} \supset \mathfrak{D}_{j} = 0, i \neq j,$

where $\mathfrak{D}_{\mathfrak{d}}$ and $\mathfrak{D}_{\mathfrak{d}}$ are open domains which are bounded by $\Gamma_{\mathfrak{d}}$ and $\Gamma_{\mathfrak{d}}$ respectively. Hence by Theorem A we have

(11)
$$J_1+J_2+\cdots+J_N+J_\delta=e$$
 $(a=\sum_{i=1}^N J_ia+J_\delta a), J_iJ_j=\theta, i\neq j, J_iJ_\delta=\theta$
and

$$\sigma(J_{\delta}a) = \{0, \lambda_{N+1}, \lambda_{N+2}, \cdots \}.$$

It follows from (12), (8) and Lemma 2 that $||J_ia|| \leq \varepsilon$. This implies that $a = \sum_{i=1}^{\infty} J_i a$. Furthermore, from Theorem A $\bar{a}_i = J_i(a - \lambda_i e)$ is quasinilpotent (or nilpotent). Hence by Lemma 1 $\bar{a}_i = J_i(a - \lambda_i e) = \theta$, that is, $J_i a = \lambda_i J_i$. Consequently, we have $a = \sum_{i=1}^{\infty} \lambda_i J_i$. When $\sigma(a)$ is finite, we have similarly $a = \sum_{i=1}^{n} \lambda_i J_i$. Thus our theorem is completely proved.

Lemma 3. If E is a bounded normal operator in a Hilbert space \mathfrak{H} such that $E^2 = E$, then E is the projection of \mathfrak{H} on some closed linear manifold \mathfrak{M} .

Proof. Let $H=EE^*(=E^*E)$. Then it is easily seen that $H^*=H$ and $H^2=H$. Hence H is the projection of \mathfrak{H} on some closed linear manifold \mathfrak{M} . We shall prove that E=H. For every $f \in \mathfrak{M}$ we have $f=EE^*f$ and hence $Ef=E(EE^*f)=E^2E^*f=EE^*f=f$. And for every $g \in \mathfrak{M}^{\perp}$ (orthogonal complement of \mathfrak{M}) we have $||Eg||^2=(Eg, Eg)$ $=(E^*Eg,g)=(Hg,g)=(\theta,g)=0$, that is, Eg=0. Consequently, the operator E coincides with the projection H of \mathfrak{H} on the closed linear manifold \mathfrak{M} .

Corollary to Theorem B. Let H be a compact normal operator in a Hilbert space \mathfrak{H} . Then H is expressed in the form

(13)
$$H = \sum_{i} \lambda_{i} E_{i}$$

where E_i is a projection such that $E_i E_j = \theta$, $i \neq j$, and $\{\lambda_1, \lambda_2, \cdots\}$ is a finite set or an enumerable set such that $\lim_{n \to \infty} \lambda_n = 0$.

Proof. Let $\mathfrak{C}(\mathfrak{H})$ be the Banach algebra of endomorphisms of \mathfrak{H} . By corresponding to every $T \in \mathfrak{C}(\mathfrak{H})$, as the adjoint of T, the adjoint operator of T, $\mathfrak{C}(\mathfrak{H})$ becomes a B^* -algebra. Let $\{H, H^*\}'$ be the set of all the operators $T \in \mathfrak{C}(\mathfrak{H})$ such that T commutes with both H and H^* .

And let \mathfrak{B} be the set of all the operators $T \in \mathfrak{S}(\mathfrak{Y})$ such that T commutes with every operator belonging to the set $\{H, H^*\}'$. Then we can easily see that \mathfrak{B} is a commutative B^* -algebra containing H and

 H^* . Evidently any element in \mathfrak{B} is a bounded normal operator in \mathfrak{F} . Since H is a compact operator, we have from a theorem in Banach spaces (see [2, p. 166, Theorem 22]) the following:

(14) The set of all the proper values of the compact operator H is a finite set or an enumerable set $\{\lambda_1, \lambda_2, \dots, \lambda_n, \dots\}$ such that $\lim_{n \to \infty} \lambda_n = 0$. And it is not hard to show that the following three conditions are mutually equivalent:

(i) $\lambda I - H$ has a bounded inverse operator with domain \mathfrak{H} , where I is the identity operator.

(ii) $\lambda I - H$ has, considered as an element in $\mathfrak{S}(\mathfrak{H})$, an inverse in $\mathfrak{S}(\mathfrak{H})$.

(iii) $\lambda I - H$ has, considered as an element in \mathfrak{B} , an inverse in \mathfrak{B} . Hence from above and (14) we see that H is, considered as an element in \mathfrak{B} , a quasi-compact element in \mathfrak{B} . According to Theorem B, H is expressed in the form

$$H = \sum \lambda_i E_i$$

where E_i is an idempotent element with $E_i E_j = \theta$, $i \neq j$ and $\{\lambda_1, \lambda_2, \cdots\}$ is a finite set or an enumerable set such that $\lim_{n \to \infty} \lambda_n = 0$. On the other hand it follows from Lemma 3 that E_i is a projection in \mathfrak{H} . Hence the corollary is completely proved.

References

- [1] E. Hille: Functional Analysis and Semi-groups, New York (1946).
- [2] S. Banach: Théorie des Opération Linéaires, Warszawa (1932).