By Kiyoshi Iséki

Kobe University (Comm. by K. KUNUGI, M.J.A., June 12, 1959)

Recently some characterisations of countably compact spaces and pseudo-compact spaces were obtained by A. Appert [1], E. Hewitt [3], J. Kersten [4] and J. Marík [5].

Following G. Aquaro [2], we shall define locally boundedness of functions, and we shall prove some results on locally boundedness.

Let S be a topological space, and let f(x) be a real valued finite function (not necessary continuous) on S. A function f(x) is said to be *locally bounded at a point* x_0 , if there is a neighbourhood V of x_0 such that f(x) is bounded on V. A function f(x) is said to be *locally bounded* if f(x) is locally bounded at every point of S.

It is clear that any continuous function on S is locally bounded. We shall show the following

Proposition 1. 1) If S is countably compact, then any locally bounded function on S is bounded.

2) If every locally bounded function on S is bounded, then S is pseudo-compact.

Proof. The second part of Proposition 1 is clear. To prove the first part, we shall suppose that there is a locally bounded and unbounded function f(x). For every positive integer n, the set $A_n = \{x \mid |f(x)| \ge n\}$ is not empty, and the sequence of sets $\{A_n\}$ is decreasing. Therefore $\{\overline{A}_n\}_{n=1,2,\dots}$ is a decreasing sequence of closed sets. Hence $\bigcap_{n=1}^{\infty} \overline{A}_n$ is not empty. Let $x_0 \in \bigcap_{n=1}^{\infty} \overline{A}_n$, since f(x) is locally bounded at the point x_0 , there is a neighbourhood V of x_0 such that f(x) is bounded on V. Hence, $|f(x)| \le N$ on V for an integer N. On the other hand, by $x_0 \in \bigcap_{n=1}^{\infty} \overline{A}_n$, there is a point x' in V such that |f(x')| > N. This completes the proof.

Corollary 1. The following conditions of a normal space S are equivalent:

1) S is countably compact.

2) S is pseudo-compact.

3) Any locally bounded function on S is bounded.

Corollary 2. A metric space is compact if and only if every locally bounded function on it is bounded.

A sequence $\{f_n\}$ of functions on S is said to converge to f quasi

uniformly in the sense of Aquaro, if, for every $\varepsilon > 0$ and positive integer ν , there is a locally bounded integer valued function $\nu(\varepsilon, x)$ on S such that $\nu \leq \nu(\varepsilon, x)$ and $|f_{\nu(\varepsilon, x)}(x) - f(x)| < \varepsilon$.

A topological space S is *metacompact* if and only if every open covering of S has a point finite refinement. Then we have the following

Proposition 2. If a sequence of continuous functions on metacompact space S converges to 0, then the covergence is quasi-uniformly in the sense of Aquaro.

Proof. Let $\{f_n(x)\}\$ be a sequence of continuous functions such that $f_n(x) \to 0$ on S.

Given $\varepsilon > 0$ and positive integer N, let $O_n = \{x \mid |f_n(x)| < \varepsilon\}, n = N$, $N+1, \cdots$. Since $f_n(x) \to 0$, $\{O_n\}_{n=N,N+1,\cdots}$ is an open covering of S. By the metacompactness of S, we can find a point-finite open covering $\omega = \{U_a\}$ of S such that ω is a point finite refinement of $\{O_n\}$. Let $x \in S$, then there is finite set of all $\alpha_1, \cdots, \alpha_k$ such that $x \in U_{\alpha_i}$ $(i=1, 2, \cdots, k)$. For each U_{α_i} , we can take the first O_{n_i} containing U_{α_i} , and let $\nu(\varepsilon, x) = \text{Min } (n_1, \cdots, n_k)$. For every point x, the integral valued function $\nu(\varepsilon, x)$ is well-defined and $\nu(\varepsilon, x) \ge N$. It is clear the $|f_{\nu(\varepsilon,x)}(x)| < \varepsilon$ for every point x of S. For any point x of S, take all open sets U_{α_i} $(i=1, 2, \cdots, k)$ containing x, and let $V = \bigcap_{i=1}^k U_{\alpha_i}$. For any y of V, the family of all open sets containing y contains U_{α_i} $(i=1, 2, \cdots, n)$. Therefore we have $\nu(\varepsilon, y) \le \min(n_1, \cdots, n_n) = \nu(\varepsilon, x)$. Hence $\nu(\varepsilon, x)$ is locally bounded. This completes the proof.

Proposition 2 implies the following

Corollary 3. If a sequence of continuous functions on a metacompact (paracompact, countably paracompact) space converges to a continuous function, then the convergence is quasi-uniform in the sense of Aquaro on the space.

References

- [1] A. Appert: Propriétés des Espaces Abstraits, 2, Paris (1934).
- [2] G. Aquaro: Sul criterio di Arzelà per la continuità del limite di una successione convergente di funzioni continue, Rendi. del Seminario, Univ. di Cagliari, 24, 1-4 (1954).
- [3] E. Hewitt: Rings or real-valued continuous functions I, Trans. Amer. Math. Soc., 64, 45-99 (1948).
- [4] J. Kersten: Zur Charakterisierung der pseudo-kompakten Raüme, Math. Nachrichten, 16, 289-293 (1957).
- [5] J. Marík: On pseudo-compact spaces, Proc. Japan Acad., 35, 120-121 (1959).