103. A Characteristic Property of L_p -Spaces (p>1)

By Kôji HONDA and Sadayuki YAMAMURO

Muroran Institute of Technology and Hokkaidô University (Comm. by K. KUNUGI, M.J.A., Oct. 12, 1959)

In the theory of L_p -spaces, p>1, the fundamental rôle is played by Hölder's inequality:

$$(1) \qquad \int_{0}^{1} f(t) \, g(t) \, dt \leq \Bigl(\int_{0}^{1} |f(t)|^{p} \, dt \Bigr)^{1/p} \Bigl(\int_{0}^{1} |g(t)|^{q} \, dt \Bigr)^{1/q}$$

where $f(t) \in L_p$, $g(t) \in L_q$ and q = p/p - 1.

This inequality is usually proved by making use of the following special Young's inequality:

$$(2) \qquad \int_{0}^{1} f(t) g(t) dt \leq \frac{1}{p} \int_{0}^{1} f(t) |^{p} dt + \frac{1}{q} \int_{0}^{1} |g(t)|^{q} dt.$$

It is well known that, for the function

(3) $g(t) = |f(t)|^{p-1} sgn f(t) = Tf(t),$

we get the equality sign in (1). Namely, if the equality holds in (2) for a pair of functions, then for the same pair the equality holds in (1). The purpose of this paper is to show that this property is characteristic for L_p -spaces, p>1.

The transformation T in (3) has the following properties:

(i) $x \ge y \ge 0$ implies $Tx \ge Ty \ge 0$;

- (ii) (Tx)[y] = T([y]x) for any projector $[y];^{1}$
- (iii) T(-x) = -Tx.

A transformation T from a universally continuous semi-ordered linear space R into its conjugate space \overline{R} ;²⁾ with the above conditions (i)-(iii) is said to be *conjugately similar*.

A function ||x|| on a universally continuous semi-ordered linear space is called a norm if

(i) $||x|| \ge 0; ||x|| = 0$ implies x=0;

- (ii) $||\alpha x|| = |\alpha| ||x||;$
- (iii) $||x+y|| \leq ||x|| + ||y||;$

(iv) $x \ge y \ge 0$ implies $||x|| \ge ||y|| \ge 0$.

The conjugate norm is defined by

$$||\overline{x}|| = \sup_{\|x\| \leq 1} (\overline{x}, x) \quad (x \in R, \ \overline{x} \in \overline{R}).$$

We prove the following

Theorem. Let R be a normed universally continuous semi-ordered

1) $[y]x = \bigcup_{n=1}^{\infty} (x n |y|)$ if $x \ge 0$ and $[y]x = [y]x^{+} - [y]x^{-}$ for any $x \in R$.

²⁾ The conjugate space of a normed semi-ordered linear space is the set of normbounded and universally continuous linear functionals. See [1, §31].

linear space which has at least two linearly independent elements and its conjugate norm be strictly convex. If there exists a one-to-one conjugately similar correspondence T with the following condition

 $(4) (Tx, x) = || Tx || \cdot || x || (0 \le x \in R),$

then we can find a number p>1 such that

$$T\xi x = \xi^{p-1} Tx$$

for any number $\xi > 0$ and $x \in R$.

In the proof, we make use of the fact that the existence of such T enables us to define on R a modular m(x) which satisfies the following conditions:

- (i) $0 < m(x) < +\infty$ for every $0 \neq x \in R$;
- (ii) $m(\xi x)$ is a convex function of $\xi > 0$;
- (iii) m(x+y) = m(x) + m(y) if x and y are mutually orthogonal;
- (iv) $x \ge y \ge 0$ implies $m(x) \ge m(y)$;
- (v) $0 \leq x_{\lambda} \uparrow x$ implies $m(x) = \sup_{\lambda \neq 0} m(x_{\lambda})$.

In fact, the modular is defined by

$$m(x) = \int_{0}^{1} (T\xi x, x) d\xi$$

when x is non-negative and

$$m(x) = m(x^{+}) - m(x^{-})$$

for any $x \in R$.

Conversely, if m is once defined, T is characterized by the following equation:

$$(Tx, x) = m(x) + \overline{m}(\overline{x})^{3}$$

which is a generalization of (3). This is the reason why we assert that our theorem gives a characterization of L_p by means of the relation between Young's and Hölder's inequalities.⁴⁾

Proof of Theorem. It follows from (4) that

(

$$T\xi x, x) = || T\xi x || \cdot || x ||$$

for any $\xi > 0$. Therefore, strict convexity of the conjugate norm implies the existence of such a function $f_x(\xi)$ that

(5) $T\xi x = f_x(\xi)Tx$ ($\xi > 0, 0 \le x \in R$). Putting

$$m(x) = \int_{0}^{1} (T\xi x, x) d\xi,$$

we get by (5) that

$$m(\xi[p]x) = \int_{0}^{\xi} (T\eta[p]x, x) d\eta$$
$$= \int_{0}^{\xi} (T\eta x, [p]x) d\eta$$

3) $\overline{m}(\overline{x}) = \sup_{x \in B} \{(\overline{x}, x) - m(x)\}.$

4) In this sense, our theorem is closely related to §3 of [2].

- ^

$$= \int_0^{\varepsilon} f_x(\eta) \, d\eta \cdot (T [p] x, x).$$

Hence it follows that

(6)
$$\frac{m(\xi[p]x)}{m([p]x)} = \frac{\int_{0}^{x} f_{x}(\eta) \, d\eta}{\int_{0}^{1} f_{x}(\eta) \, d\eta} = \frac{m(\xi x)}{m(x)}$$

for any $\xi > 0$ and [p] with $[p]x \neq 0$.

Now, we will prove that, if (6) holds for any element x, we can find a number p>1 such that

$$m(\xi x) = \xi^p m(x) \qquad (\xi > 0).$$

To prove this, take a positive element x. Since R is at least two dimensional, there exists y>0 such that $x \frown y=0$. Then, putting $z_{\varepsilon} = \xi x + y$, we have by (6) that

$$\frac{m(\eta z_{\varepsilon})}{m(z_{\varepsilon})} = \frac{m(\eta [x] z_{\varepsilon})}{m([x] z_{\varepsilon})} = \frac{m(\xi \eta x)}{m(\xi x)} \qquad (\xi, \eta > 0)$$

and

$$\frac{m(\eta z_{\xi})}{m(z_{\xi})} = \frac{m(\eta [y] z_{\xi})}{m([y] z_{\xi})} = \frac{m(\eta y)}{m(y)} \qquad (\xi, \eta > 0).$$

Therefore,

$$\frac{m(\xi\eta x)}{m(x)} = \frac{m(\eta x)}{m(x)} \cdot \frac{m(\xi x)}{m(x)} \qquad (\xi, \eta > 0).$$

Since $m(\xi x)$ is continuous with respect to $\xi > 0$, we can find $p \ge 1$ such that

$$m(\xi x) = \xi^p m(x) \qquad (\xi > 0).$$

Here, p must be strictly greater than one, because T is one-to-one. From the definition of m, it follows that

 $(T\xi x, x) = \xi^{p-1}(Tx, x)$

and therefore,

$$T\xi x = \xi^{p-1} T x.$$

REMARK 1. The conclusion of this theorem means that R can be represented by a subset of L_p -space, p>1, on some measure space. If R is reflexive as a vector lattice, R is represented by an L_p -space.

REMARK 2. The case of one-dimensional space is exceptional. Let Φ and Ψ be Young's complementary functions, by which we can consider the set of all real numbers as an Orlicz space. For the norm $||x||_{\varphi} = \inf \{\xi^{-1}: \Phi(\xi x) \leq 1, \xi \geq 0\}$ and its conjugate norm $||x||_{\varphi} = \inf [1 + \Psi(\xi x)] \cdot \xi^{-1}$, we always have $(Tx, x) = ||Tx||_{\Psi} \cdot ||x||_{\varphi}$, where Tx is defined by $\varphi(x)$, the left-hand derivative of $\Phi(x)$.

References

- [1] H. Nakano: Modulared Semi-ordered Linear Spaces, Tokyo (1950).
- [2] S. Yamamuro: On conjugate spaces of Nakano spaces, Trans. Amer. Math. Soc., 90, 291-311 (1959).

448