103. A Characteristic Property of \mathbf{L}_{p}-Spaces $(p>1)$

By Kôji Honda and Sadayuki Yamamuro
Muroran Institute of Technology and Hokkaidô University (Comm. by K. Kunugr, m.J.A., Oct. 12, 1959)

In the theory of L_{p}-spaces, $p>1$, the fundamental rôle is played by Hölder's inequality:

$$
\begin{equation*}
\int_{0}^{1} f(t) g(t) d t \leqq\left(\int_{0}^{1}|f(t)|^{p} d t\right)^{1 / p}\left(\int_{0}^{1}|g(t)|^{q} d t\right)^{1 / q} \tag{1}
\end{equation*}
$$

where $f(t) \in L_{p}, g(t) \in L_{q}$ and $q=p / p-1$.
This inequality is usually proved by making use of the following special Young's inequality:

$$
\begin{equation*}
\int_{0}^{1} f(t) g(t) d t \leqq\left.\frac{1}{p} \int_{0}^{1} f(t)\right|^{p} d t+\frac{1}{q} \int_{0}^{1}|g(t)|^{q} d t . \tag{2}
\end{equation*}
$$

It is well known that, for the function

$$
\begin{equation*}
g(t)=|f(t)|^{p-1} \operatorname{sgn} f(t)=T f(t) \tag{3}
\end{equation*}
$$

we get the equality sign in (1). Namely, if the equality holds in (2) for a pair of functions, then for the same pair the equality holds in (1). The purpose of this paper is to show that this property is characteristic for L_{p}-spaces, $p>1$.

The transformation T in (3) has the following properties:
(i) $x \geqq y \geqq 0 \quad$ implies $\quad T x \geqq T y \geqq 0$;
(ii) $(T x)[y]=T([y] x)$ for any projector [y]; ${ }^{1)}$
(iii) $T(-x)=-T x$.

A transformation T from a universally continuous semi-ordered linear space R into its conjugate space $\bar{R} ;{ }^{2}$ with the above conditions (i)-(iii) is said to be conjugately similar.

A function $\|x\|$ on a universally continuous semi-ordered linear space is called a norm if
(i) $\|x\| \geqq 0 ;\|x\|=0 \quad$ implies $\quad x=0$;
(ii) $\quad\|\alpha x\|=|\alpha|\|x\|$;
(iii) $\|x+y\| \leqq\|x\|+\|y\|$;
(iv) $x \geqq y \geqq 0 \quad$ implies $\quad\|x\| \geqq\|y\| \geqq 0$.

The conjugate norm is defined by

$$
\|\bar{x}\|=\sup _{\|x\| \leq 1}(\bar{x}, x) \quad(x \in R, \bar{x} \in \bar{R})
$$

We prove the following
Theorem. Let R be a normed universally continuous semi-ordered

[^0]linear space which has at least two linearly independent elements and its conjugate norm be strictly convex. If there exists a one-to-one conjugately similar correspondence T with the following condition
\[

$$
\begin{equation*}
(T x, x)=\|T x\| \cdot\|x\| \quad(0 \leqq x \in R) \tag{4}
\end{equation*}
$$

\]

then we can find a number $p>1$ such that

$$
T \xi x=\xi^{p-1} T x
$$

for any number $\xi>0$ and $x \in R$.
In the proof, we make use of the fact that the existence of such T enables us to define on R a modular $m(x)$ which satisfies the following conditions:
(i) $0<m(x)<+\infty$ for every $0 \neq x \in R$;
(ii) $m(\xi x)$ is a convex function of $\xi>0$;
(iii) $m(x+y)=m(x)+m(y)$ if x and y are mutually orthogonal;
(iv) $x \geqq y \geqq 0 \quad$ implies $\quad m(x) \geqq m(y)$;
(v) $0 \leqq x_{2} \uparrow x \quad$ implies $\quad m(x)=\sup _{\lambda \in \Lambda} m\left(x_{\lambda}\right)$.

In fact, the modular is defined by

$$
m(x)=\int_{0}^{1}(T \xi x, x) d \xi
$$

when x is non-negative and

$$
m(x)=m\left(x^{+}\right)-m\left(x^{-}\right)
$$

for any $x \in R$.
Conversely, if m is once defined, T is characterized by the following equation:

$$
(T x, x)=m(x)+\bar{m}(\bar{x})^{3)}
$$

which is a generalization of (3). This is the reason why we assert that our theorem gives a characterization of L_{p} by means of the relation between Young's and Hölder's inequalities. ${ }^{4)}$

Proof of Theorem. It follows from (4) that

$$
(T \xi x, x)=\|T \xi x\| \cdot\|x\|
$$

for any $\xi>0$. Therefore, strict convexity of the conjugate norm implies the existence of such a function $f_{x}(\xi)$ that
(5)

$$
T \xi x=f_{x}(\xi) T x \quad(\xi>0,0 \leqq x \in R)
$$

Putting

$$
m(x)=\int_{0}^{1}(T \xi x, x) d \xi
$$

we get by (5) that

$$
\begin{aligned}
m(\xi[p] x) & =\int_{0}^{\xi}(T \eta[p] x, x) d \eta \\
& =\int_{0}^{\xi}(T \eta x,[p] x) d \eta
\end{aligned}
$$

3) $\bar{m}(\bar{x})=\sup _{x \in \mathbb{Z}}\{(\bar{x}, x)-m(x)\}$.
4) In this sense, our theorem is closely related to $\S 3$ of [2].

$$
=\int_{0}^{\xi} f_{x}(\eta) d \eta \cdot(T[p] x, x)
$$

Hence it follows that

$$
\begin{equation*}
\frac{m(\xi[p] x)}{m([p] x)}=\frac{\int_{0}^{\xi} f_{x}(\eta) d \eta}{\int_{0}^{1} f_{x}(\eta) d \eta}=\frac{m(\xi x)}{m(x)} \tag{6}
\end{equation*}
$$

for any $\xi>0$ and $[p]$ with $[p] x \neq 0$.
Now, we will prove that, if (6) holds for any element x, we can find a number $p>1$ such that

$$
m(\xi x)=\xi^{p} m(x)
$$

To prove this, take a positive element x. Since R is at least two dimensional, there exists $y>0$ such that $x \frown y=0$. Then, putting $z_{\xi}=\xi x+y$, we have by (6) that

$$
\frac{m\left(\eta z_{\xi}\right)}{m\left(z_{\xi}\right)}=\frac{m\left(\eta[x] z_{\xi}\right)}{m\left([x] z_{\xi}\right)}=\frac{m(\xi \eta x)}{m(\xi x)} \quad(\xi, \eta>0)
$$

and

$$
\frac{m\left(\eta z_{\xi}\right)}{m\left(z_{\xi}\right)}=\frac{m\left(\eta[y] z_{\xi}\right)}{m\left([y] z_{\xi}\right)}=\frac{m(\eta y)}{m(y)} \quad(\xi, \eta>0)
$$

Therefore,

$$
\frac{m(\xi \eta x)}{m(x)}=\frac{m(\eta x)}{m(x)} \cdot \frac{m(\xi x)}{m(x)} \quad(\xi, \eta>0)
$$

Since $m(\xi x)$ is continuous with respect to $\xi>0$, we can find $p \geqq 1$ such that

$$
m(\xi x)=\xi^{p} m(x) \quad(\xi>0)
$$

Here, p must be strictly greater than one, because T is one-to-one.
From the definition of m, it follows that

$$
(T \xi x, x)=\xi^{p-1}(T x, x)
$$

and therefore,

$$
T \xi x=\xi^{p-1} T x .
$$

Remark 1. The conclusion of this theorem means that R can be represented by a subset of L_{p}-space, $p>1$, on some measure space. If R is reflexive as a vector lattice, R is represented by an L_{p}-space.

Remark 2. The case of one-dimensional space is exceptional. Let Φ and Ψ be Young's complementary functions, by which we can consider the set of all real numbers as an Orlicz space. For the norm $\|x\|_{\Phi}=\inf \left\{\xi^{-1}: \Phi(\xi x) \leqq 1, \xi \geqq 0\right\}$ and its conjugate norm $\|x\|_{\Phi}=\inf _{\xi}$ $[1+\Psi(\xi x)] \cdot \xi^{-1}$, we always have $(T x, x)=\|T x\|_{\mathscr{F}} \cdot\|x\|_{\mathscr{Q}}$, where $T x$ is defined by $\varphi(x)$, the left-hand derivative of $\Phi(x)$.

References

[1] H. Nakano: Modulared Semi-ordered Linear Spaces, Tokyo (1950).
[2] S. Yamamuro: On conjugate spaces of Nakano spaces, Trans. Amer. Math. Soc., 90, 291-311 (1959).

[^0]: 1) $[y] x=\cup_{n=1}^{\infty}(x-n|y|)$ if $x \geqq 0$ and $[y] x=[y] x^{+}-[y] x^{-}$for any $x \in R$.
 2) The conjugate space of a normed semi-ordered linear space is the set of normbounded and universally continuous linear functionals. See [1, §31].
