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1. The main object of this note is to show that the Thue-Siegel-
Roth theorem can somewhat be refined when the field of reference is
an imaginary quadratic number field. The Thue-Siegel-Roth theorem
[I] is

Theorem 1. Let K be an algebraic number field of finite degree
and let a be algebraic of degree at least 2 over K. Then for each
> 2, the inequality

-: l< (H(=))-" 1
has only a finite number of solutions in K.

Here H() denotes the height of $, the maximum of the absolute
values of the coefficients in the primitive irreducible equation with
rational integral coefficients of which $ is a zero, while we designate
by M() the absolute value of the highest coefficient in that equation
for :.

Since an algebraic number field K of finite degree has only finitely
many subfields and every element of K is a primitive number of some
one of its subfields, in order to establish Theorem 1 it is enough to
prove that for each >2, the inequality (1)is satisfied by only finitely
many primitive numbers $ in K. In ths respect the following theorem
will be of some interest:

Theorem 2. Let a be any non-zero algebraic number and let K
be an imaginary quadratic number field. If the inequality

a-- < (M($))-" ( 2 )
is satisfied by infinitely many primitive numbers in K, then 1.

It is clear that M()H($) for any fixed and M()=I for any
integral $. From this result one can deduce at once the following

Theorem 3. Let a and K be as in Theorem 2. Then for each
2, the inequality

O< a -has only a finite number of integer solutions p, q (qO) in K.
If, in (3), p and q (q0) are restricted to be rational integers,

Theorem 3 reduces to a recent result of K.F. Roth [3, and we may
exclude this rational case. Then the fraction p/q with integers p, q
(q=0) in K is a primitive number $ in K, and, for any representation
=p’/q’ of the number with integers p’, q’ (q’ 0) in K, it satisfies
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an irreducible equation of the type*)

q’ [ x+2h x+[ p’ ]--0,
h being a certain rational integer. Hence, by the definition of M(),
we have M()] q’ ] and, in particular,

z
Thus Theorem 3 is an immediate consequence of Theorem 2.

We remark that Theorem 3 is the best result o its kind possible
i is to be independent o ql, since O. Perron’s result [2 shows
lhat or any complex irrational number a there are infinitely many
pairs o integers p, q (q 0) in every imaginary quadratic number field
K satisCying the inequality

a- <ql----,
where C>0 is a constant depending only on K.

2. Our proof of Theorem 2 follows the lines of Roth’s work
with some modifieations. The following arguments will suggest inci-
dentally the possibility of making a slight simplification on W.J.
LeVeque’s proof [1 of Theorem 1.

Let m, q,...,, q, r,..., r be positive rational integers. First we
note that Lemmas 5, 6 and hence Lemma 7 in [3 hold true with any
algebraic numbers $,..., $ such that M($)=q,..., M($)--q in place
of rational fractions h/q,. ., h,/q, respectively, where 1 p m.
Necessary changes in the proofs of them are obvious.

Suppose now that a is an algebraic integer other than zero, and
let K be an imaginary quadratic number field. We take a single set
of values of the numbers m, 3, q,..., q, r,..., r which satisfy the
conditions (29), (30), (31), (32) and (33) of [3. Also we define the numbers
2, -, ], B as in [3. Then we can prove the following lemma which
is an analogue of Lemma 9 of [3.

Lemma. Suppose that the conditions just imposed for m, , q,.-.,
q, r,..., r are satisfied, and suppose that $,...,$ are arbitrary
numbers in K such that M($)=q,..., M($)=q. Then there exists
a polynomial Q(x,..., x) with rational integral coefficients, of degree
at most r in x (j=l,..., m), such that

(i) the index of Q at the point (a,..., a) relative to r,...,r
is at least --;

(iii) for all derivatives Q... (x,..., x), where i,..., i are any
non-negative integers, we have

Q..., (," ", ) I<B
*) The square of the absolute value of an integer in K is equal to the norm of

the integer and hence is a rational integer: it is positive when the integer is
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zero algebraic number and let K be an imaginary quadratic number
field. Suppose that the theorem is false, so that for some 1, there
exists a set E of infinitely many primitive numbers $ (a) in K satis-
fying the inequality (2). Then M($) is not bounded when $ runs through
the elements of E. For, otherwise, it would follow from the relation

]M() . -M()M(-)
that M(-) is unbounded when runs through the elements of E,
since there are only a finite number of integers in K with a given
norm. But every in E is a solution of (2), so that

[ Il +<M())-’l [+1,
M($-) =] $ I(I !+1)< ,
M($)

which is impossible. Hence there are primitive solutions $ of (2)with
arbitrarily large M(), and we may now suppose that a is an algebraic
integer. For, if not, putting a--M(a), we have for each $ in E

0<] a--a I< a(M($))-’a(M(a$))-’.
Hence for arbitrary e >0 and for all $ in E with M() sufficiently large

0 <[ aa--a$ I< (M(a))-"
and can be chosen so small that x--> 1.

We first choose m so large that m>4nmv2, where n is the degree
of a over the rationals, and that

<, (4)
--4nm/2

which is possible since 1. We then take to be a sufficiently small
positive number, so that the condition (29) of [3 holds. By the
definitions of 2, y and , it follows from (4) that

(1+)m+2(1+4) <x 5 )
2(r-)

for all sufficiently small 6.
We now choose a solution G of (2) from the infinite set E, with

M($)--q sufficiently large to satisfy (32) of [3. We then choose
further solutions $2,..., $ of (2) from E with M(G)=q,. ., M($)--q,
where q,..., q are positive rational integers satisfying the condition
(50) of [3. Finally, we define the positive integers r,..., r by (51)
and (52) of [3.

We know from the lemma noted above that there exists a poly-
nomial Q(x,..., x) with the properties listed there. Then the number

-QG,...,G)
is an element of K, and we have

lqT’...q= , ( 6 )
since the number on the right-hand side of (6) is a non-zero rational
integer.
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On the other hand, we have
Q(,..., ), , Q... (,"" ", )(--)"""(--)%

il0 imp0

and by the lemma we find that
]< B+qZ,cr-)‘,

whence follows that
q...q: [ ]<

Comparing this with (6), we obtain
0< 2(1+4)+ (1--)m--2(T--),

or

< (+a)m+2a(+
2(r-)

which contradicts (5). This completes the proof of Theorem 2.
We note that our argument can be extended to obtain an analogue

of a theorem of D. Ridout (Rational approximations to algebraic
numbers, Mathematika, 4, 125-131 (1957)) in imaginary quadratic
number fields.
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