93. On the Thue-Siegel-Roth Theorem. I

By Saburô Uchiyama
Department of Mathematics, Hokkaidô University, Sapporo, Japan
(Comm. by Z. Suetuna, M.J.A., Oct. 12, 1959)

1. The main object of this note is to show that the Thue-SiegelRoth theorem can somewhat be refined when the field of reference is an imaginary quadratic number field. The Thue-Siegel-Roth theorem [1] is

Theorem 1. Let K be an algebraic number field of finite degree and let α be algebraic of degree at least 2 over K. Then for each $\kappa>2$, the inequality

$$
\begin{equation*}
|\alpha-\xi|<(H(\xi))^{-\kappa} \tag{1}
\end{equation*}
$$

has only a finite number of solutions ξ in K.
Here $H(\xi)$ denotes the height of ξ, the maximum of the absolute values of the coefficients in the primitive irreducible equation with rational integral coefficients of which ξ is a zero, while we designate by $M(\xi)$ the absolute value of the highest coefficient in that equation for ξ.

Since an algebraic number field K of finite degree has only finitely many subfields and every element of K is a primitive number of some one of its subfields, in order to establish Theorem 1 it is enough to prove that for each $\kappa>2$, the inequality (1) is satisfied by only finitely many primitive numbers ξ in K. In this respect the following theorem will be of some interest:

Theorem 2. Let α be any non-zero algebraic number and let K be an imaginary quadratic number field. If the inequality

$$
\begin{equation*}
|\alpha-\xi|<(M(\xi))^{-\kappa} \tag{2}
\end{equation*}
$$

is satisfied by infinitely many primitive numbers ξ in K, then $\kappa \leqq 1$.
It is clear that $M(\xi) \leqq H(\xi)$ for any fixed ξ and $M(\xi)=1$ for any integral ξ. From this result one can deduce at once the following

Theorem 3. Let α and K be as in Theorem 2. Then for each $\nu>2$, the inequality

$$
\begin{equation*}
0<\left|\alpha-\frac{p}{q}\right|<\frac{1}{|q|^{\nu}} \tag{3}
\end{equation*}
$$

has only a finite number of integer solutions $p, q(q \neq 0)$ in K.
If, in (3), p and $q(q \neq 0)$ are restricted to be rational integers, Theorem 3 reduces to a recent result of K. F. Roth [3], and we may exclude this rational case. Then the fraction p / q with integers p, q ($q \neq 0$) in K is a primitive number ξ in K, and, for any representation $\xi=p^{\prime} / q^{\prime}$ of the number ξ with integers $p^{\prime}, q^{\prime}\left(q^{\prime} \neq 0\right)$ in K, it satisfies
an irreducible equation of the type*)

$$
\left|q^{\prime}\right|^{2} x^{2}+2 h x+\left|p^{\prime}\right|^{2}=0,
$$

h being a certain rational integer. Hence, by the definition of $M(\xi)$, we have $M(\xi) \leqq\left|q^{\prime}\right|^{2}$ and, in particular,

$$
M(\xi) \leqq|q|^{2}
$$

Thus Theorem 3 is an immediate consequence of Theorem 2.
We remark that Theorem 3 is the best result of its kind possible if ν is to be independent of $|q|$, since 0 . Perron's result [2] shows that for any complex irrational number α there are infinitely many pairs of integers $p, q(q \neq 0)$ in every imaginary quadratic number field K satisfying the inequality

$$
\left|\alpha-\frac{p}{q}\right|<\frac{C}{|q|^{2}},
$$

where $C>0$ is a constant depending only on K.
2. Our proof of Theorem 2 follows the lines of Roth's work [3] with some modifications. The following arguments will suggest incidentally the possibility of making a slight simplification on W.J. LeVeque's proof [1] of Theorem 1.

Let $m, q_{1}, \cdots, q_{m}, r_{1}, \cdots, r_{m}$ be positive rational integers. First we note that Lemmas 5,6 and hence Lemma 7 in [3] hold true with any algebraic numbers ξ_{1}, \cdots, ξ_{p} such that $M\left(\xi_{1}\right)=q_{1}, \cdots, M\left(\xi_{p}\right)=q_{p}$ in place of rational fractions $h_{1} / q_{1}, \cdots, h_{p} / q_{p}$, respectively, where $1 \leqq p \leqq m$. Necessary changes in the proofs of them are obvious.

Suppose now that α is an algebraic integer other than zero, and let K be an imaginary quadratic number field. We take a single set of values of the numbers $m, \delta, q_{1}, \cdots, q_{m}, r_{1}, \cdots, r_{m}$ which satisfy the conditions (29), (30), (31), (32) and (33) of [3]. Also we define the numbers $\lambda, \gamma, \eta, B_{1}$ as in [3]. Then we can prove the following lemma which is an analogue of Lemma 9 of [3].

Lemma. Suppose that the conditions just imposed for m, δ, q_{1}, \cdots, $q_{m}, r_{1}, \cdots, r_{m}$ are satisfied, and suppose that ξ_{1}, \cdots, ξ_{m} are arbitrary numbers in K such that $M\left(\xi_{1}\right)=q_{1}, \cdots, M\left(\xi_{m}\right)=q_{m}$. Then there exists a polynomial $Q\left(x_{1}, \cdots, x_{m}\right)$ with rational integral coefficients, of degree at most r_{j} in $x_{j}(j=1, \cdots, m)$, such that
(i) the index of Q at the point (α, \cdots, α) relative to r_{1}, \cdots, r_{m} is at least $\gamma-\eta$;
(ii) $Q\left(\xi_{1}, \cdots, \xi_{m}\right) \neq 0$;
(iii) for all derivatives $Q_{i_{1} \cdots i_{m}}\left(x_{1}, \cdots, x_{m}\right)$, where i_{1}, \cdots, i_{m} are any non-negative integers, we have

$$
\left|Q_{i_{1} \cdots i_{m}}(\alpha, \cdots, \alpha)\right|<B_{1}^{1+3 \delta}
$$

[^0]3. We are now going to prove Theorem 2. Let α be a nonzero algebraic number and let K be an imaginary quadratic number field. Suppose that the theorem is false, so that for some $\kappa>1$, there exists a set E of infinitely many primitive numbers $\xi(\neq \alpha)$ in K satisfying the inequality (2). Then $M(\xi)$ is not bounded when ξ runs through the elements of E. For, otherwise, it would follow from the relation
$$
|M(\xi) \cdot \xi|^{2}=M(\xi) M\left(\xi^{-1}\right)
$$
that $M\left(\xi^{-1}\right)$ is unbounded when ξ runs through the elements of E, since there are only a finite number of integers in K with a given norm. But every ξ in E is a solution of (2), so that
\[

$$
\begin{aligned}
& |\xi| \leqq|\alpha|+(M(\xi))^{-x} \leqq|\alpha|+1 \\
& \frac{M\left(\xi^{-1}\right)}{M(\xi)}=|\xi|^{2} \leqq(|\alpha|+1)^{2}<\infty,
\end{aligned}
$$
\]

which is impossible. Hence there are primitive solutions ξ of (2) with arbitrarily large $M(\xi)$, and we may now suppose that α is an algebraic integer. For, if not, putting $a=M(\alpha)$, we have for each ξ in E

$$
0<|\alpha \alpha-a \xi|<\alpha(M(\xi))^{-x} \leqq \alpha(M(a \xi))^{-x}
$$

Hence for arbitrary $\varepsilon>0$ and for all ξ in E with $M(\xi)$ sufficiently large

$$
0<|a \alpha-a \xi|<(M(a \xi))^{-\kappa+\varepsilon},
$$

and ε can be chosen so small that $\kappa-\varepsilon>1$.
We first choose m so large that $m>4 n m^{1 / 2}$, where n is the degree of α over the rationals, and that

$$
\begin{equation*}
\frac{m}{m-4 n m^{1 / 2}}<\kappa, \tag{4}
\end{equation*}
$$

which is possible since $\kappa>1$. We then take δ to be a sufficiently small positive number, so that the condition (29) of [3] holds. By the definitions of λ, γ and η, it follows from (4) that

$$
\begin{equation*}
\frac{(1+\delta)}{2(\gamma-\eta)} \frac{m+2 \delta(1+4 \delta)}{2(\gamma)}<\kappa \tag{5}
\end{equation*}
$$

for all sufficiently small δ.
We now choose a solution ξ_{1} of (2) from the infinite set E, with $M\left(\xi_{1}\right)=q_{1}$ sufficiently large to satisfy (32) of [3]. We then choose further solutions ξ_{2}, \cdots, ξ_{m} of (2) from E with $M\left(\xi_{2}\right)=q_{2}, \cdots, M\left(\xi_{m}\right)=q_{m}$, where q_{2}, \cdots, q_{m} are positive rational integers satisfying the condition (50) of [3]. Finally, we define the positive integers r_{1}, \cdots, r_{m} by (51) and (52) of [3].

We know from the lemma noted above that there exists a polynomial $Q\left(x_{1}, \cdots, x_{m}\right)$ with the properties listed there. Then the number

$$
\varphi=Q\left(\xi_{1}, \cdots, \xi_{m}\right)
$$

is an element of K, and we have

$$
\begin{equation*}
1 \leqq q_{1}^{r_{1}} \cdots q_{m}^{r_{m}}|\varphi|^{2} \tag{6}
\end{equation*}
$$

since the number on the right-hand side of (6) is a non-zero rational integer.

On the other hand, we have

$$
\begin{aligned}
& Q\left(\xi_{1}, \cdots, \xi_{m}\right) \\
& \quad=\sum_{i_{1}=0}^{r_{1}} \cdots \sum_{i_{m}=0}^{r_{m}} Q_{i_{1} \cdots i_{m}}(\alpha, \cdots, \alpha)\left(\xi_{1}-\alpha\right)^{i_{1}} \cdots\left(\xi_{m}-\alpha\right)^{i_{m}}
\end{aligned}
$$

and by the lemma we find that

$$
|\varphi|<B_{1}^{1+4 \delta} q_{1}^{-r_{1}(r-\eta) x},
$$

whence follows that

$$
q_{1}^{r_{1}} \cdots q_{m}^{r_{m}}|\varphi|^{2}<q_{1}^{2 \delta(1+4 \delta) r_{1}+(1+\delta) m r_{1}-2 r_{1}(\gamma-\eta) \varepsilon}
$$

Comparing this with (6), we obtain

$$
0<2 \delta(1+4 \delta)+(1+\delta) m-2(\gamma-\eta) \kappa,
$$

or

$$
\kappa<\frac{(1+\delta) m+2 \delta(1+4 \delta)}{2(\gamma-\eta)},
$$

which contradicts (5). This completes the proof of Theorem 2.
We note that our argument can be extended to obtain an analogue of a theorem of D . Ridout (Rational approximations to algebraic numbers, Mathematika, 4, 125-131 (1957)) in imaginary quadratic number fields.

References

[1] W. J. LeVeque: Topics in Number Theory, Reading, Massachusetts, AddisonWesley Publishing Co., Vol. 2, Chapter 4 (1956).
[2] O. Perron: Diophantische Approximationen in imaginären quadratischen Zahlkörpern, etc., Math. Zeitschr., 37, 747-767 (1933); especially §2.
[3] K. F. Roth: Rational approximations to algebraic numbers, Mathematika, 2, 120, with corrigendum, 168 (1955).

[^0]: *) The square of the absolute value of an integer in K is equal to the norm of the integer and hence is a rational integer: it is positive when the integer is $\neq 0$.

