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The aim of this note is to show that there are certain non analogi-
cal properties between the 1-function quantified predicates (or the sets
definable by such predicates) in Kleene hierarchy with free variables of
types _<1 and those with free variables of type 2.

In particular, there is no second separation (and hence, reduction)
result for the classes of sets definable by the 1-function quantified
predicates in Kleene hierarchy with free variables of type 2, in contrast
to the case with free variables of types _<1) in which the reduction
theorem holds for the universal quantifier first side- namely, using the
notation of Addison’s [1, for II sets (and hence, as to separation,
the first and the second separation theorems hold for the existential
quantifier first side namely, for sets).)

Throughout this paper, the ideas and the techniques of Kleene
[8, in particular, 8.2-8.8J are used.

1o We assume familiarity with [5-8, and use the notation of
them unless further references. Using the notation of 1 (in addition,
with superscripts m--0, 1,2,... exhibiting the maximal type of free
variables of the predicates), we denote by .’, II’ the classes of predi-
cates (or sets) in Kleene hierarchies, sccording to the kind of the
outermost quantifier, the highest type "r" of variables quantified, the
number "k" of alternations of the quantifiers of type r and the highest
type "m" of quantifier-free variables in the forms of Kleene’s tables
(cf. [6, (a) with free variables of types 0, p. 315 and [8, (c) p. 41),
respectively. For example, a predicate P(a, , F) expressible in the form

*) The contents with detailed proofs will appear in a forthcoming paper. As to
Kleene hierarchies, it is referred to Kleene’s excellent series of papers [4, 6-8] on
hierarchies obtained by quantifying variables of recursive predicates.

1) Cf. [1, 5, Case 2J.
2) Recently Addison [2, p. 352] has conjectured that on hierarchies based on

quantification of higher type, under the assumption of the axiom of constructibility,
the separation results are uniform according to the kind of the outermost quantifier
for all types r (r>_0) and levels /c (]c_l) except for the lone case when r=l, k=l.
In fact, for Kleene hierarchies based on quantification of finite type, we can assure
that Addison’s conjecture holds, and see that the separation results are uniform also
in types m (m <_r+l) of quantifier-free variables under the same exception. As to
the case when r--l, k--l, the author’s result shows that the separation principle does
not uniformly behave to types of quantifier-free variables.
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(Efl)(x)R(a, , F, fl, x)
with a general recursive R is of ’:.

2. As is well known, for m< 1, every predicate P(a) of 21 (II1)
is expressible in the form (Efl)(x)R(a, fl(x)) ((fl)(Ex)R(a, fl(x))) with a
primitive recursive R(a, u) (cf. for example 8, footnote 14)] or 7,
XVII):
(2.1) P(a) (E)(x)R(a, ()) ()(Ex)R(a, fl()) ).
Unlike the case for ml, there is in general no primitive recursive
R(a, u) such that (2.1) holds for a predicate P(a) of }’= (and dually H},=).
Now, let },=*(H},=*) be the class of predicates P(a) of }’=(HI’=) for
which (2.1) holds with a primitive recursive R. Then we have

12 12*Theorem 1. {’=*’ (H’ H{’=).
In fact, we see that if ay(E)()--0 (which is of 1,= were

a predicate of ’=*, then it would be contradictory to the following

Lemma 1. Let o be a given type-2 obdec$ (namely, a completely
defined functional with one function variable as argument)which
remains wih a timed value when the value of argumen$ is primitive
recursive. Then any function (a,,..., a) primitive vecuvsive in o
is primitive recursive.

The proof of this lemma is given by induction on the length of
a primitive recursive description of (a, y).

3. Let ,. be the particular type-2 object defined thus:
0 if,(a)-
1 otherwise.

Employing this object ,, we have the following theorems.
Theorem 2. If (, a,,..., an, ) i8 primitive recursive wih a

description of y-heigh h (cf. 8, p. 45), then (, a,,..., a, ) is
primitive recursive in uniformly in .

The proof of this theorem is obtained by the methods similar to
the proof of 8, XLVI.

3) a denotes a list of variables of types _<n. The superscript m is omitted if
arbitrary or clear from context.

4) We have also a strengthenecl form of this lemma and of the fact that if
(a,,..., an) is general (primitive) recursive in r0 (cf. [8, p. 48]) which is a given general
(primitive) recursive object of type 2, then (a,,..., an) is general (primitive) recursive:

There is a primitive recursive function (z, w) with the following property. Let
z, w be indices of (a, r), 0(), and be defined for all general ’ecursive functions .
Then, for values of a, such that (a, ) is defied and
(.) ()=() for any general ’ecursive ,
we have (a, )= {(z, w)}(a).

Thus" Given a particular type-2 object o for which there is a general (primi-
tive) recursive function o() such that (.) holds, then any function (a,,..-, an) general
(primitive) recursive in o is general (primitive) vecuvsive.

5) For , cf. [7, p. 211] taking Q(a)-((a)o)=(a),.
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Theorem 3. When m_l, any predicate P(a) primitive recur-
sive in is of,

Suppose P(a) is primitive recursive in [. Then the representing
function (a’) of P(a) is primitive recursive in , and hence there is
a primitive recursive function 0(, a) such that 0(, a)--O(a). By
induction on the length of a description of , it can be shown that the
predicate 0(, ) w is of i’ ’H: For case 8, the techniques of
[3 are used.

Next, let be given P(a) general recursive in . Then there is
a partial recursive (, a), say with index z, such that (, ) is
completely defined and is the representing function of P(). Using
[8, XXVI with (13) for the predicate "0([, )-0 ", we have a corol-
lary.

Corollary. When ml, any predicate P(a) general recursive
in is of z,n H21,m

We can see that for any yeO:o the representing function of (a))

is general recursive in . It is under investigation what subclass of
constitute the predicates P(’) general recursive in for

mgl.

4. Now, for a given type-2 object Yo we denote by 0

(H’0) the class of predicates P() for which there is a predicate
R(, , x) general recursive in Y0 such that

P() (Eft) (x)R(a, fl, x) ( (fl)(Ex)R(, fl, x) ).
It holds an interesting theorem as follows.

lmTheorem 4. For m _< 1, ’--’ (’-- ’ ), ,’

Let mg 1. Evidently, we have , ,. In the proof of
the converse implication ’,, it is used that for mgl any
predicate P(a) general recursive in is of , ,H The latter
is easily assured by the same methods as the first half of the proof
for 8, XLVIII.

Next, to prove ,, it is sufficien to show that, for
example, the predicate (Efl)(y)(Ex)T:,,((x), a, a) is of ’.

The function

r(u, a, , a)-( 0 if T’,l(u, a, a),
1 otherwise

is primitive recursive, and so is

a)).

6) The notation for ordinals "0o" and the hierarchy "gJy" have been introduced
and discussed by Addison and Kleene in [3]. For these definitions, cf. [3, p. 1003].

7) | is the particular type-2 object defined by Kleene (cf. [8, p. 45J) thus:

t()=, 0 if (Ex)[(x)=O],
1 otherwise.
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On giving y the fixed value lh, we have
(4.1) (Efl)r(, , fl, a)=O]-(E)(T)(Ex)T:’’I((x), a, a),
where (Efl)[r(, a, , a)--0 is of E’[ by the definition. The con-
verse implication ’[]’ is proved by the corollary of Theo-
rem 3.. In addition to [2, p. 352, we are on the point of showing
a further example that (’, H’)-predicates stand alone as peculiar.

Theorem 5. It holds neither Sep (],2) nor Sep (H’).
In fact, by Sep(’l)9) and ’1-’[!1, we have Sep(>2’2). On

the other hand, by Sep(H’)9) and H’I--II’I[I, we have Sep (HI’).
By the above theorem, we have Red (H’) and Red (1’) (cf. 9

or [_1). But it is open how behaves the first separation principle for
(],, H,2)-sets.

Remark. Using [2, Theorem 1, we can prove under the assump-
tion of the axiom of constructibility Red (]’) for k >1.

5. Let ]’*(II’) be the class of predicates P(a)of ’(H’)
for which (2.1) holds with a general recursive R. By the corollary of
Theorem 3, (4.1) and using the techniques of [3, we obtain the next
theorem, in contrast with the case of m_<l.

Theorem 6. l,.t
In addition to Kleene 8, XLIX, (b)J, we have by Theorem 2 and

the estimation of hyperdegree that a general recursive predicate

P(a) is not in general expressible in the form (E)(x)R(a, (x)) (or
()(Ex)R(a, (x))) with a primitive recursive R(a, u). Hence we have

Theorem 7. E’2. -E’(HI’* : II’).
12 12Uniting the above two theorems, we have ]’*@’*:]’ (H’ *

:II’*:II’) whieh gives also another proof of Theorem 1.
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