2. On Ideals Defining Non-Singular Algebraic Varieties

By Shizuo Endo
(Comm. by Z. Suetuna, m.J.A., Jan. 12, 1960)

The purpose of this note is to prove the following
Theorem 1. Let V be a non-singular irreducible algebraic variety of dimension d, defined over a field K in an affine space A^{n}. Then the ideal defining V over K is generated by at most $(n-d)(d+1)+1$ elements.

To simplify our expression, we shall denote with $\mathrm{N}_{R}(\mathfrak{a})$ the minimum number of elements generating the ideal \mathfrak{a} in a Noetherian ring R. Our theorem means $\mathrm{N}_{R}(\mathfrak{p}) \leq(n-d)(d+1)+1$, when R is the polynomial ring of n variables $K\left[X_{1}, X_{2}, \cdots, X_{n}\right]$ over K and \mathfrak{p} is the prime ideal defining V over K. Now R is a regular domain as defined e.g. in my former paper [2] and R / \mathfrak{p} becomes also a regular domain as \mathfrak{p} defines a non-singular variety. The rank of p is $n-d$, as V is d dimensional (cf. [1]). So our Theorem 1 is contained in the following more general

Theorem 2. Let R be a regular ring of dimension d and \mathfrak{p} be a prime ideal of rank s in R such that R / p is also a regular ring. Then $\mathrm{N}_{R}(\mathfrak{p}) \leq s(d-s+1)+1$.

We shall begin with some lemmas.
Lemma 1. Let R be a semi-local ring with maximal ideals m_{1}, $\mathfrak{m}_{2}, \cdots, \mathfrak{m}_{s}$ and $\mathfrak{a}=\left(a_{1}, a_{2}, \cdots, a_{s}\right)$ be any ideal generated by s elements in R. Then the simultaneous equations $x \equiv a_{i}\left(\bmod . \mathfrak{a m}_{i}\right) \quad 1 \leq i \leq s$, have a solution in R.

Proof. Since R is semi-local, we have $R=\left(\bigcap_{j \neq i} \mathfrak{m}_{j}, \mathfrak{m}_{i}\right)$ for any i. So there exist elements e_{i}, d_{i} for any i such that $1=e_{i}+d_{i}$, where $e_{i} \notin \mathfrak{m}_{i}, \in \bigcap_{j \neq i} \mathfrak{m}_{j}$ and $d_{i} \in \mathfrak{m}_{i}$. Then, if we set $a=\sum_{i=1}^{s} e_{i} a_{i}$, this is a solution as is required.

Lemma 2. Let R be a local ring with a maximal ideal \mathfrak{m}, \mathfrak{a} be any ideal of R and \mathfrak{b} be an ideal of R contained in \mathfrak{a}. Then, if $\mathfrak{a}=\mathfrak{b}$ $+\mathfrak{a m}$, we have $\mathfrak{a}=\mathfrak{b}$.

Proof. Set $\bar{R}=R / \mathfrak{b}, \overline{\mathfrak{a}}=\mathfrak{a} / \mathfrak{b}$ and $\overline{\mathfrak{m}}=\mathfrak{m} / \mathfrak{b}$. Then, by our assumption, we have $\overline{\mathfrak{m}} \overline{\mathfrak{a}}=\overline{\mathfrak{a}}$. So, $\overline{\mathfrak{a}} \subset \bigcap_{k=1}^{\infty} \overline{\mathfrak{M}}^{k}$. Since \bar{R} is a local ring, we have, by Krull's theorem, $\bigcap_{k=1}^{\infty} \overline{\mathfrak{m}}^{k}=(0)$. That is, $\overline{\mathfrak{a}}=(0)$. This shows $\mathfrak{a}=\mathfrak{b}$.

Lemma 3. Let R be a Noetherian ring and $\mathfrak{a}, \mathfrak{b}$ be two ideals of R such that $\mathfrak{a} \supset \mathfrak{b}$. If $\mathfrak{a} R_{\mathfrak{m}}=\mathfrak{b} R_{\mathfrak{m}}$ for any maximal ideal \mathfrak{m} of R, we have $\mathfrak{a}=\mathfrak{b}$.

Proof. Let a be any element of \mathfrak{a} and put $\mathfrak{b}=\left(b_{1}, b_{2}, \cdots, b_{t}\right)$. By our assumption we have $\bar{a}=\alpha_{1} \bar{b}_{1}+\alpha_{2} \bar{b}_{2}+\cdots+\alpha_{t} \bar{b}_{t}$ in any R_{m}, where α_{i} is in R_{m} for any i and \bar{a}, \bar{b} are the residues of a, b in R, respectively. Therefore we obtain $s a=r_{1} b_{1}+r_{2} b_{2}+\cdots+r_{t} b_{t}, r_{i}, s \in R, s \notin \mathrm{~m}$. Accordingly, if we set $\mathfrak{c}=\{c ; c a \in \mathfrak{b}, \mathfrak{c} \in R\}$, then an ideal \mathfrak{c} must coincide with R itself. This shows $\mathfrak{a}=\mathfrak{b}$.

From these lemmas we obtain the following
Proposition 1. Let R be a semi-local ring with maximal ideals $\mathfrak{m}_{1}, \mathfrak{m}_{2}, \cdots, \mathfrak{m}_{s}$ and \mathfrak{a} be any ideal of R. Then we have

$$
\mathrm{N}_{R}(\mathfrak{a})=\max _{1 \leq i \leq s} \mathrm{~N}_{R_{\mathfrak{m}_{i}}}\left(\mathfrak{a} R_{\mathfrak{m}_{i}}\right) .
$$

Proof. For any i we choose n_{i} elements $a_{i, 1}, \cdots, a_{i, n_{i}}$ from \mathfrak{a} such that $\mathfrak{a} R_{\mathfrak{m}_{i}}=\left(a_{i, 1}, \cdots, a_{i, n_{i}}\right) R_{\mathfrak{m}_{i}}$, where $n_{i}=\mathrm{N}_{R_{\mathfrak{m}_{i}}}\left(\mathfrak{a} R_{\mathfrak{m}_{i}}\right)$. Set $n=\max _{1 \leq i \leq s} n_{i}$ $=\max _{1 \leq i \leq s} \mathrm{~N}_{R_{\mathfrak{m}_{i}}}\left(\mathfrak{a} R_{\mathfrak{m}_{i}}\right)$. If $n_{i}<n$, we put $0=a_{i, n_{i+1}}=\cdots=a_{i, n}$. Consider a set of elements ($a_{1, j}, a_{2, j}, \cdots, a_{s, j}$) for any $1 \leq j \leq n$ and apply Lemma 1 to this. Then, for any j, the simultaneous equations $x \equiv a_{i, j}$ (mod. $\mathfrak{a m}_{i}$) have a solution a_{j} in \mathfrak{a}. So we have

$$
\mathfrak{a} R_{\mathfrak{m}_{i}}=\left(\bar{a}_{i, 1}, \cdots, \bar{a}_{i, n}\right)+\mathfrak{a m}_{i} R_{\mathfrak{m}_{i}}=\left(\bar{a}_{1}, \cdots, \bar{a}_{n}\right)+\mathfrak{a m} \mathfrak{m}_{i} R_{\mathfrak{m}_{i}}
$$

Now if we put $\mathfrak{b}=\left(a_{1}, a_{2}, \cdots, a_{n}\right)$, we obtain $\mathfrak{a} R_{\mathfrak{m}_{i}}=6 R_{\mathfrak{m}_{i}}$, by Lemma 2, for any i. Hence, according to Lemma 3, we have $\mathfrak{a}=6$. This shows $\mathrm{N}_{R}(\mathfrak{a}) \leq \max _{1 \leq i \leq s} \mathrm{~N}_{R_{\mathrm{m}_{i}}}\left(\mathfrak{a} R_{\mathfrak{m}_{i}}\right)$. The inverse inequality is obvious. So our assertion is proved.

By applying this proposition to a general Noetherian ring, we obtain

Proposition 2. Let R be a d dimensional Noetherian ring and \mathfrak{p} be a prime ideal of rank s in R. Set $k=\sup _{\mathfrak{m}} \mathrm{N}_{R \mathfrak{m}}\left(\mathfrak{p} R_{\mathfrak{m}}\right)$ where \mathfrak{m} runs over all maximal ideals of R. Then we have $\mathrm{N}_{R}(\mathfrak{p}) \leq k(d-s+1)$ +1 .

Remark. This proposition holds also if we replace the prime ideal \mathfrak{p} by any ideal \mathfrak{a}. The proof runs similarly when \mathfrak{a} is primary. For general \mathfrak{a} the proof can be easily given in using the decomposition of \mathfrak{a} in primary ideals.

Proof. By our assumption, if we choose suitably k elements $p_{1}^{(1)}$, $p_{2}^{(1)}, \cdots, p_{k}^{(1)}$ from \mathfrak{p}, we have $\left(p_{1}^{(1)}, p_{2}^{(1)}, \cdots, p_{k}^{(1)}\right)=\mathfrak{p} \bigcap \mathfrak{a}_{0}$, where \mathfrak{a}_{0} is an ideal of rank s or more. If rank $\mathfrak{a}_{0}>s$ we set $\mathfrak{a}_{1}=\mathfrak{a}_{0}$ and $\mathfrak{p}^{(0)}=0$. On the other hand, if rank $\mathfrak{a}_{0}=s$, we select an element $p^{(0)}$ from \mathfrak{p} which is not contained in any prime ideal of rank s belonging to \mathfrak{a}_{0}. Then, in both cases, we have

$$
\left(p^{(0)}, p_{1}^{(1)}, \cdots, p_{k}^{(1)}\right)=\mathfrak{p} \bigcap \mathfrak{a}_{1},
$$

where rank $\mathfrak{a}_{1} \geq s+1$. If rank $\mathfrak{a}_{1}>s+1$, we set $\mathfrak{a}_{2}=\mathfrak{a}_{1}$ and $p_{i}^{(2)}=0$ for $1 \leq i \leq k$. In case rank $\mathfrak{a}_{1}=s+1$, we denote by $\mathfrak{p}_{1}, \mathfrak{p}_{2}, \cdots, \mathfrak{p}_{t}$ all prime
ideals of rank $s+1$ belonging to \mathfrak{a}_{1}. Set $R^{\prime}=R_{S}$, where $S=\left\{s ; s \in \bigcap_{i}^{t}(R\right.$ $\left.\left.-\mathfrak{p}_{i}\right)\right\}$. Then R^{\prime} is a semi-local ring, hence, by applying Proposition 1 to R^{\prime}, \mathfrak{p}, we can choose k elements of \mathfrak{p} such that

$$
\left(p_{1}^{(2)}, p_{2}^{(2)}, \cdots, p_{i}^{(2)}\right) R^{\prime}=\mathfrak{p} R^{\prime}
$$

So we have $\quad\left(p^{(0)}, p_{1}^{(1)}, \cdots, p_{k}^{(1)}, p_{1}^{(2)}, \cdots, p_{k}^{(2)}\right)=\mathfrak{p} \bigcap \mathfrak{a}_{2}$
in both cases, where rank $\mathfrak{a}_{2} \geq s+2$. By repeating this procedure we obtain similarly for any integer t

$$
\left(p^{(0)}, p_{1}^{(1)}, \cdots, p_{k}^{(1)}, p_{1}^{(2)}, \cdots, p_{1}^{(t)}, \cdots, p_{k}^{(t)}\right)=\mathfrak{p} \bigcap \mathfrak{a}_{t}
$$

where rank $\mathfrak{a}_{t} \geq s+t$. However, since R is d dimensional, we have $\mathfrak{a}_{t}=R$ for any t such that $t \geq d-s+1$. Therefore this procedure can not be repeated more than $d-s+1$ times. Thus we obtain

$$
\mathfrak{p}=\left(p^{(0)}, p_{1}^{(1)}, \cdots, p_{k}^{(1)}, \cdots, p_{1}^{(d-s+1)}, \cdots, p_{k}^{(d-s+1)}\right)
$$

This shows that $\mathrm{N}_{R}(\mathfrak{p}) \leq k(d-s+1)+1$.
The proof of Theorem 2 can be now carried out very easily. Let \mathfrak{m} be any maximal ideal of R. Since $R_{\mathfrak{m}}$ and $(R / \mathfrak{p})_{\mathfrak{m} / \mathfrak{p}}$ are then regular local rings, $\mathfrak{p} R_{\mathfrak{m}}$ is generated by s elements in R, by a well-known result in the theory of local rings (cf. [1]). From Proposition 2 follows therefore $\mathrm{N}_{R}(\mathfrak{p}) \leq s(d-s+1)+1$.

References

[1] Y. Akizuki: Theory of local rings, Lecture notes in Univ. Chicago (1958).
[2] S. Endo: On regular rings, Jour. Math. Soc. Japan, 11, 159-170 (1959).

