2. On Ideals Defining Non-Singular Algebraic Varieties

By Shizuo Endo

(Comm. by Z. SUETUNA, M.J.A., Jan. 12, 1960)

The purpose of this note is to prove the following

Theorem 1. Let V be a non-singular irreducible algebraic variety of dimension d, defined over a field K in an affine space A^n . Then the ideal defining V over K is generated by at most (n-d)(d+1)+1elements.

To simplify our expression, we shall denote with $N_R(a)$ the minimum number of elements generating the ideal a in a Noetherian ring R. Our theorem means $N_R(\mathfrak{p}) \leq (n-d)(d+1)+1$, when R is the polynomial ring of n variables $K[X_1, X_2, \dots, X_n]$ over K and \mathfrak{p} is the prime ideal defining V over K. Now R is a regular domain as defined e.g. in my former paper [2] and R/\mathfrak{p} becomes also a regular domain as \mathfrak{p} defines a non-singular variety. The rank of \mathfrak{p} is n-d, as V is ddimensional (cf. [1]). So our Theorem 1 is contained in the following more general

Theorem 2. Let R be a regular ring of dimension d and \mathfrak{p} be a prime ideal of rank s in R such that R/\mathfrak{p} is also a regular ring. Then $N_R(\mathfrak{p}) \leq s(d-s+1)+1$.

We shall begin with some lemmas.

Lemma 1. Let R be a semi-local ring with maximal ideals \mathfrak{m}_1 , $\mathfrak{m}_2, \dots, \mathfrak{m}_s$ and $\mathfrak{a} = (a_1, a_2, \dots, a_s)$ be any ideal generated by s elements in R. Then the simultaneous equations $x \equiv a_i \pmod{\mathfrak{a}_i}$ $1 \le i \le s$, have a solution in R.

Proof. Since R is semi-local, we have $R = (\bigcap_{j \neq i} \mathfrak{m}_j, \mathfrak{m}_i)$ for any *i*. So there exist elements e_i, d_i for any *i* such that $1 = e_i + d_i$, where $e_i \notin \mathfrak{m}_i, \in \bigcap_{j \neq i} \mathfrak{m}_j$ and $d_i \in \mathfrak{m}_i$. Then, if we set $a = \sum_{i=1}^s e_i a_i$, this is a solution as is required.

Lemma 2. Let R be a local ring with a maximal ideal m, a be any ideal of R and b be an ideal of R contained in a. Then, if a=b+am, we have a=b.

Proof. Set $\overline{R} = R/b$, $\overline{a} = a/b$ and $\overline{m} = m/b$. Then, by our assumption, we have $\overline{m} \,\overline{a} = \overline{a}$. So, $\overline{a} \subset \bigcap_{k=1}^{\infty} \overline{m}^k$. Since \overline{R} is a local ring, we have, by Krull's theorem, $\bigcap_{k=1}^{\infty} \overline{m}^k = (0)$. That is, $\overline{a} = (0)$. This shows a = b.

Lemma 3. Let R be a Noetherian ring and $\mathfrak{a}, \mathfrak{b}$ be two ideals of R such that $\mathfrak{a} \supset \mathfrak{b}$. If $\mathfrak{a}R_{\mathfrak{m}} = \mathfrak{b}R_{\mathfrak{m}}$ for any maximal ideal \mathfrak{m} of R, we have $\mathfrak{a} = \mathfrak{b}$.

S. ENDO

Proof. Let a be any element of a and put $b = (b_1, b_2, \dots, b_t)$. By our assumption we have $\overline{a} = \alpha_1 \overline{b}_1 + \alpha_2 \overline{b}_2 + \dots + \alpha_t \overline{b}_t$ in any R_m , where α_i is in R_m for any *i* and $\overline{a}, \overline{b}$ are the residues of *a*, *b* in *R*, respectively. Therefore we obtain $sa = r_1b_1 + r_2b_2 + \dots + r_tb_t$, $r_i, s \in R, s \notin m$. Accordingly, if we set $c = \{c; ca \in b, c \in R\}$, then an ideal *c* must coincide with *R* itself. This shows a = b.

From these lemmas we obtain the following

Proposition 1. Let R be a semi-local ring with maximal ideals $\mathfrak{m}_1, \mathfrak{m}_2, \cdots, \mathfrak{m}_s$ and a be any ideal of R. Then we have

$$\mathbf{N}_{R}(\mathfrak{a}) = \max_{1 \leq i \leq s} \mathbf{N}_{R_{\mathfrak{m}_{i}}}(\mathfrak{a}R_{\mathfrak{m}_{i}}).$$

Proof. For any *i* we choose n_i elements $a_{i,1}, \dots, a_{i,n_i}$ from a such that $aR_{\mathfrak{m}_i} = (a_{i,1}, \dots, a_{i,n_i})R_{\mathfrak{m}_i}$, where $n_i = N_{R_{\mathfrak{m}_i}}(aR_{\mathfrak{m}_i})$. Set $n = \max_{1 \le i \le s} n_i$ $= \max_{1 \le i \le s} N_{R_{\mathfrak{m}_i}}(aR_{\mathfrak{m}_i})$. If $n_i < n$, we put $0 = a_{i,n_{j+1}} = \dots = a_{i,n}$. Consider a set of elements $(a_{1,j}, a_{2,j}, \dots, a_{s,j})$ for any $1 \le j \le n$ and apply Lemma 1 to this. Then, for any *j*, the simultaneous equations $x \equiv a_{i,j} \pmod{a\mathfrak{m}_i}$ have a solution a_j in a. So we have

$$\mathfrak{a}R_{\mathfrak{m}_{i}} = (\overline{a}_{i,1}, \cdots, \overline{a}_{i,n}) + \mathfrak{a}\mathfrak{m}_{i}R_{\mathfrak{m}_{i}} = (\overline{a}_{1}, \cdots, \overline{a}_{n}) + \mathfrak{a}\mathfrak{m}_{i}R_{\mathfrak{m}_{i}}.$$

Now if we put $b = (a_1, a_2, \dots, a_n)$, we obtain $aR_{\mathfrak{m}_i} = bR_{\mathfrak{m}_i}$, by Lemma 2, for any *i*. Hence, according to Lemma 3, we have a = b. This shows $N_R(\mathfrak{a}) \leq \max_{1 \leq i \leq s} N_{R_{\mathfrak{m}_i}}(\mathfrak{a}R_{\mathfrak{m}_i})$. The inverse inequality is obvious. So our assertion is proved.

By applying this proposition to a general Noetherian ring, we obtain

Proposition 2. Let R be a d dimensional Noetherian ring and \mathfrak{p} be a prime ideal of rank s in R. Set $k = \sup_{\mathfrak{m}} N_{R_{\mathfrak{m}}}(\mathfrak{p}R_{\mathfrak{m}})$ where \mathfrak{m} runs over all maximal ideals of R. Then we have $N_{R}(\mathfrak{p}) \leq k(d-s+1)$ +1.

Remark. This proposition holds also if we replace the prime ideal \mathfrak{p} by any ideal \mathfrak{a} . The proof runs similarly when \mathfrak{a} is primary. For general \mathfrak{a} the proof can be easily given in using the decomposition of \mathfrak{a} in primary ideals.

Proof. By our assumption, if we choose suitably k elements $p_1^{(1)}$, $p_2^{(1)}, \dots, p_k^{(1)}$ from \mathfrak{p} , we have $(p_1^{(1)}, p_2^{(1)}, \dots, p_k^{(1)}) = \mathfrak{p} \cap \mathfrak{a}_0$, where \mathfrak{a}_0 is an ideal of rank s or more. If rank $\mathfrak{a}_0 > s$ we set $\mathfrak{a}_1 = \mathfrak{a}_0$ and $\mathfrak{p}^{(0)} = 0$. On the other hand, if rank $\mathfrak{a}_0 = s$, we select an element $p^{(0)}$ from \mathfrak{p} which is not contained in any prime ideal of rank s belonging to \mathfrak{a}_0 . Then, in both cases, we have

$$(p^{(0)}, p_1^{(1)}, \cdots, p_k^{(1)}) = \mathfrak{p} \bigcap \mathfrak{a}_1,$$

where rank $a_1 \ge s+1$. If rank $a_1 > s+1$, we set $a_2 = a_1$ and $p_i^{(2)} = 0$ for $1 \le i \le k$. In case rank $a_1 = s+1$, we denote by $\mathfrak{p}_1, \mathfrak{p}_2, \dots, \mathfrak{p}_i$ all prime

ideals of rank s+1 belonging to \mathfrak{a}_1 . Set $R'=R_s$, where $S=\left\{s;s\in\bigcap_{i=1}^r(R-\mathfrak{p}_i)\right\}$. Then R' is a semi-local ring, hence, by applying Proposition 1 to R', \mathfrak{p} , we can choose k elements of \mathfrak{p} such that

 $(p_1^{(2)}, p_2^{(2)}, \cdots, p_k^{(2)})R' = \mathfrak{p}R'.$

So we have $(p^{(0)}, p_1^{(1)}, \dots, p_k^{(1)}, p_1^{(2)}, \dots, p_k^{(3)}) = \mathfrak{p} \bigcap \mathfrak{a}_2$ in both cases, where rank $\mathfrak{a}_2 \ge s+2$. By repeating this procedure we obtain similarly for any integer t

 $(p^{(0)}, p_1^{(1)}, \cdots, p_k^{(1)}, p_1^{(2)}, \cdots, p_1^{(t)}, \cdots, p_k^{(t)}) = \mathfrak{p} \cap \mathfrak{a}_t$

where rank $a_t \ge s+t$. However, since R is d dimensional, we have $a_t = R$ for any t such that $t \ge d-s+1$. Therefore this procedure can not be repeated more than d-s+1 times. Thus we obtain

 $\mathfrak{p} = (p^{(0)}, p_1^{(1)}, \dots, p_k^{(1)}, \dots, p_1^{(d-s+1)}, \dots, p_k^{(d-s+1)}).$ This shows that $N_R(\mathfrak{p}) \leq k(d-s+1)+1.$

The proof of Theorem 2 can be now carried out very easily. Let \mathfrak{m} be any maximal ideal of R. Since $R_{\mathfrak{m}}$ and $(R/\mathfrak{p})_{\mathfrak{m}/\mathfrak{p}}$ are then regular local rings, $\mathfrak{p}R_{\mathfrak{m}}$ is generated by s elements in R, by a well-known result in the theory of local rings (cf. [1]). From Proposition 2 follows therefore $N_R(\mathfrak{p}) \leq s(d-s+1)+1$.

References

[1] Y. Akizuki: Theory of local rings, Lecture notes in Univ. Chicago (1958).

[2] S. Endo: On regular rings, Jour. Math. Soc. Japan, 11, 159-170 (1959).