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The sets which come into consideration are all to be polyhedral
in some Euclidean space and manifolds, cells, spheres are to be com-
binatorial; all homeomorphisms, imbeddings are to be piecewise linear.

The regular neighborhood is originally defined by J. H. C. White-
head,) which is not necessary the neighborhood in the set theoretic
sense. We put some restrictions to it as follows.

Definition. Let P be a finite polyhedron imbedded in an m-manifold
W without boundary. The regular neighborhood U(P, W) of P in W
means an m-manifold contained in W and containing P in the interior,
which contracts geometrically into P.

Then the results of Whitehead imply the following
Theorem 1. Let .P be a finite polyhedron imbedded in a mani-

fold W without boundary. Then for any two regular neighborhoods
U(P, W) and U.(P, W) of P in W there is a homeomorphism onto

" W->W such that 4(U(P, W))- U.(P, W) and 4 P--identity where
is an orientation preserving homeomorphism if W is orientable.
The combinatorial version of the SchSnflies conjecture for dimen-

sion n is the following statement: Let an (n--1)-sphere Sn- be im-
bedded in Euclidean n-space R. Then the closure of the bounded
component of R--Sn- is an n-cell.

This has been affirmatively proved) for n3. Theorem 1 enables
us to prove the following

Theorem 2. Let a compact, n-manifold M without boundary be
imbedded into an orientable, oriented (n+l)-manifold W without
boundary, i-l, 2. Let U(M, W) be a regular neighborhood of M in

W and 0"M1--> M. be a homeomorphism onto.
Suppose that the combinatorial version of the Sch6nflies conjec-

ture is true for dimension n.
Then there is a homeomorphism onto ’U(MI, W)-->U(M., W)

such that ! M-- and such that the oriented image of oriented
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U(M1, WI) is the oriented U(M, W) where the orientation of U(M, W)
is induced by that of W.

In the proof of Theorem 2 we make extensive use of combinatorial
methods and results of V. K. A. M. Gugenheim.)

As consequents of Theorem 2 we have the following theorems.
Theorem 3. Let a compact, orientable n-manifold M without

boundary be imbedded in an orientable (n+l)-manifold W without
boundary. Let U(M, W) be a regular neighborhood of M in W.

Suppose that the combinatorial version of the SchSnflies conjec-
ture is true for dimension n.

Then there is a homeomorphism into " MJ->W such that
O(x, O)-x for all xM and such that O(MJ)-U(M, W), where J is
the interval --lsl.

Theorem 4. Let M be a compact, orientable n-manifold without
boundary imbedded in an orientable (n+l)-manifold W without
boundary. Let " M-->M be a homeomorphism which is onto isotopic
to the identity.

Suppose that the combinatorial version of the SchSnflies conjec-
ture is true for dimension n.

Then there is an orientation preserving homeomorphism onto
W-->W such that 1 M=.
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