28. On Orientable Manifolds of Dimension Three

By Hiroshi YAMASUGE and Yoshihiro SAITO (Comm. by K. KUNUGI, M.J.A., March 12, 1960)

Let M be a closed orientable differentiable manifold of dimension 3 and f be a function on $M \times I$ where I = [-1, 1]. Let x_i (i=1, 2, 3)be a local coordinate system of M and t be the parameter varying on I. We write f_t instead of f when we consider that f is a function on M for fixed t. A point at which every first derivative of f_t with respect to x_i vanishes is called stational point and it is called ordinary stational point or super stational point according as: $\det\left(\frac{\partial^2 f}{\partial x_i \partial x_j}\right) \neq 0$ or $\det\left(\frac{\partial^2 f}{\partial x_i \partial x_j}\right) = 0$.

If the origin $x_i=0$ (i=1,2,3) is an ordinary stational point of f_0 , in a neighborhood of this point f_t becomes

$$f_t = a(t) + \Sigma a_{ij}(t) x_i x_j$$

where |t| is small and det $(a_{ij}(0)) \neq 0$.

And if $x_i=0$ is a super stational point of f_0 , by a suitable coordinate system f_t is represented as

$$f_t = c + c_0 t + \sqrt{-c_1 t} x_1^2 + c_2 x_2^2 + c_3 x_3^2 + \frac{1}{3} x_1^3$$

where $x_2 = o(\sqrt{|t|})$ and $x_3 = o(\sqrt{|t|})$. Here we can assume that all c_{ν} ($\nu = 0$, 1, 2, 3) are not 0. Hence for a small |t| we have two stational points (0, 0, 0) and $(-2\sqrt{-c_1t}, 0, 0)$ of f_t . At the point (0, 0, 0) or $(-2\sqrt{-c_1t}, 0, 0)$ of f_t is represented as $c+c_0t+\sqrt{-c_1t}x_1^2+c_2x_2^2+c_3x_3^2$ or $c+c_0t-\sqrt{-c_1t}(x_1+2\sqrt{-c_1t})^2+c_2x_2^2+c_3x_3^2$ where all c_{ν} ($\nu=0, 1, 2, 3$) are not zero. We call a stational point to be type (μ) if the non-degenerate diagonal quadratic form in the Taylor's expansion of f_t at this point has μ negative terms. Suppose the above origin is type (μ) then $(-2\sqrt{-c_1t}, 0, 0)$ is type ($\mu+1$) and we call the super stational point (0, 0, 0) of f_0 to be type ($\mu, \mu+1$) or $(\mu+1, \mu)$ according as $c_1 < 0$ or $c_1 > 0$. We see easily that values of t on the locus of stational points take the minimums or the maximums at points of type ($\mu, \mu+1$) or $(\mu+1, \mu)$.

Let D and D' be two solid spheres with n holes as Fig. 1 and σ a homeomorphism of ∂D to $\partial D'$ and $D \smile D'$ the manifold defined by identifying ∂D and $\partial D'$ by σ .

Now we consider the necessary and sufficient condition so that $D \smile_{\sigma} D'$ is diffeomorphic with $D \smile_{\tau} D'$. Clearly we can construct a function g on $D \smile_{\sigma} D'$ satisfying the following conditions.

a) g < 0 in $D - \partial D$, g = 0 on ∂D and g > 0 in $D' - \partial D'$.

b) In D g has one stational point of type (0) and n stational points of type (1) and in D' g has n stational points of type (2) and one stational point of type (3). Similarly we construct a function hon $D \stackrel{\sim}{\tau} D'$ satisfying the above conditions. Put $M = D \stackrel{\sim}{\sigma} D'$ and $N = D \stackrel{\sim}{\tau} D'$ and let u be a diffeomorphism of M on N. From now on we write $M \cong N$ when M is diffeomorphic with N.

Now we consider the function $f_t(p) = \frac{1-t}{2}g(p) + \frac{1+t}{2}h(up)$, for $p \in M$. Then from the above we have

Lemma 1. In the locus of stational points of f_t the number of the points of type (1, 2) is equal to the number of the points of type (2, 1).

If $x_i=0$ (i=1, 2, 3) is a super stational point of f_0 and |t| is sufficiently small we can reform f_t a little in a neighborhood U containing (0, 0, 0) and $(-2\sqrt{-c_1t}, 0, 0)$ so that f_t has no stational point in U. And conversely if f_t is regular in U we can reform f_t a little in U so that f_t has two stational points as mentioned above. From these by reforming f along suitable pathes we can change the locus of stational points so that we have

Lemma 2. For the function f there exists a function \overline{f} satisfying the following properties:

a) For every positive number ε we can take a sufficiently small positive number δ so that $|\bar{f}_{-1+s} - f_{-1+s}| < \varepsilon$ and $|\bar{f}_{1-s} - f_{1-s}| < \varepsilon$ for $0 \leq s \leq \delta$.

b) The t-coordinates of all stational points of type (1, 2) or (2, 1) are -1 or 1 and the values of \overline{f} at these points are always 0.

Introduce in M a Riemannian metric and consider stream lines which are normal on every equi-potential surface of \bar{f}_t . If necessary by reforming \bar{f}_t in tubular neighborhoods of stream lines which flow out from or flow into stational points of type (1) or (2) and in neighborhoods of stational points of type (0) or (3), we get

Lemma 3. We can make f in Lemma 2 have the property c)

besides a) and b):

No. 3]

c) The values of \overline{f} at stational points of type (0), (1), (0, 1) or (1, 0) are always negative and the values of \overline{f} at stational points of type (2), (3), (2, 3) or (3, 2) are always positive.

Let *m* be the number of stational points of type (1, 2) and G_k $(k=1,\dots,m)$ small solid cylinders in *D*. Since by $\sigma \ \Sigma \partial G_k \ \partial D$ is identified to $\sigma(\Sigma \partial G_k \ \partial D) \ \subset \partial D'$ we cut out ΣG_k from *D* and bring it to $\partial D'$, write it $\Sigma \sigma G_k$, and paste $\Sigma \partial G_k \ \partial D$ on $\sigma(\Sigma \partial G_k \ \partial D)$ by σ .

Fig. 3

Denote by $\overline{\sigma}$ the identifying map of $\partial(D - \Sigma G_k)$ to $\partial(D' \cup \Sigma \sigma G_k)$ obtained from σ by the above operation.

Putting $M_{\delta} = \{p | \bar{f}_{\delta}(p) \leq 0\}$ and $M'_{\delta} = \{p | \bar{f}_{\delta}(p) \geq 0\}$, we have $M_{\delta} \simeq D - \Sigma G_k$, $M'_{\delta} \simeq D' \smile \Sigma \sigma G_k$ and $M \simeq (D - \Sigma G_k) \smile (D' \smile \Sigma \sigma G_k)$. Similarly we have $M_{1-\delta} \simeq D - \Sigma G_k$, $M'_{1-\delta} \simeq D' \smile \Sigma \tau G_k$ and $M \simeq (D - \Sigma G_k) \smile (D' \smile \Sigma \tau G_k)$. Since the boundary ∂M_t is a submanifold of M and moves continuously with respect to t there exists a transformation of M which map M_{δ} on $M_{1-\delta}$. We can assume without loss of generality that $\sigma G_k = \tau G_k$. And thus we have

Theorem. If $D_{\sigma} D' \simeq D_{\tau} D'$ then for a sufficiently large integer m there exist transformation y of $D - \sum_{1}^{m} G_{k}$ and transformation zof $D' \sim \sum_{1}^{m} \sigma G_{k}$ such that $\overline{\sigma} y = z\overline{\tau}$ where $\overline{\sigma}$ or $\overline{\tau}$ is the identifying map of $D - \Sigma G_{k}$ to $D' \sim \Sigma_{\sigma} G_{k}$ obtained from σ or τ .