28. On Orientable Manifolds of Dimension Three

By Hiroshi Yamasuge and Yoshihiro Saito
(Comm. by K. Kunugi, m.J.A., March 12, 1960)

Let M be a closed orientable differentiable manifold of dimension 3 and f be a function on $M \times I$ where $I=[-1,1]$. Let $x_{i}(i=1,2,3)$ be a local coordinate system of M and t be the parameter varying on I. We write f_{t} instead of f when we consider that f is a function on M for fixed t. A point at which every first derivative of f_{t} with respect to x_{i} vanishes is called stational point and it is called ordinary stational point or super stational point according as: $\operatorname{det}\left(\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}\right) \neq 0$ or $\operatorname{det}\left(\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}\right)=0$.

If the origin $x_{i}=0(i=1,2,3)$ is an ordinary stational point of f_{0}, in a neighborhood of this point f_{t} becomes

$$
f_{t}=a(t)+\Sigma a_{i j}(t) x_{i} x_{j}
$$

where $|t|$ is small and $\operatorname{det}\left(\alpha_{i j}(0)\right) \neq 0$.
And if $x_{i}=0$ is a super stational point of f_{0}, by a suitable coordinate system f_{t} is represented as

$$
f_{t}=c+c_{0} t+\sqrt{-c_{1} t} x_{1}^{3}+c_{2} x_{2}^{2}+c_{3} x_{3}^{3}+\frac{1}{3} x_{1}^{3}
$$

where $x_{2}=o(\sqrt{|t|})$ and $x_{3}=o(\sqrt{|t|})$. Here we can assume that all c_{ν} ($\nu=0$, $1,2,3$) are not 0 . Hence for a small $|t|$ we have two stational points $(0,0,0)$ and $\left(-2 \sqrt{-c_{1} t}, 0,0\right)$ of f_{t}. At the point $(0,0,0)$ or $\left(-2 \sqrt{-c_{1} t}, 0\right.$, $0) f_{t}$ is represented as $c+c_{0} t+\sqrt{-c_{1} t} x_{1}^{2}+c_{2} x_{2}^{2}+c_{3} x_{3}^{2}$ or $c+c_{0} t-\sqrt{-c_{1} t}\left(x_{1}\right.$ $\left.+2 \sqrt{-c_{1} t}\right)^{2}+c_{2} x_{2}^{2}+c_{3} x_{3}^{2}$ where all $c_{\nu}(\nu=0,1,2,3)$ are not zero. We call a stational point to be type (μ) if the non-degenerate diagonal quadratic form in the Taylor's expansion of f_{t} at this point has μ negative terms.
Suppose the above origin is type (μ) then $\left(-2 \sqrt{-c_{1} t}, 0,0\right)$ is type $(\mu+1)$ and we call the super stational point $(0,0,0)$ of f_{0} to be type $(\mu, \mu+1)$ or ($\mu+1, \mu$) according as $c_{1}<0$ or $c_{1}>0$. We see easily that values of t on the locus of stational points take the minimums or the maximums at points of type $(\mu, \mu+1)$ or ($\mu+1, \mu$).

Let D and D^{\prime} be two solid spheres with n holes as Fig. 1 and σ a homeomorphism of ∂D to ∂D^{\prime} and $D{ }_{\sigma} D^{\prime}$ the manifold defined by identifying ∂D and ∂D^{\prime} by σ.

Now we consider the necessary and sufficient condition so that $D{ }_{\sigma} D^{\prime}$ is diffeomorphic with $D_{\tau} \smile D^{\prime}$. Clearly we can construct a function g on $D_{\sigma}^{\smile} D^{\prime}$ satisfying the following conditions.
a) $g<0$ in $D-\partial D, g=0$ on ∂D and $g>0$ in $D^{\prime}-\partial D^{\prime}$.

Fig. 1
b) In $D g$ has one stational point of type (0) and n stational points of type (1) and in $D^{\prime} g$ has n stational points of type (2) and one stational point of type (3). Similarly we construct a function h on $D_{\tau}^{\smile} D^{\prime}$ satisfying the above conditions. Put $M=D_{\sigma}^{\smile} D^{\prime}$ and $N=D_{\tau}^{\smile} D^{\prime}$ and let u be a diffeomorphism of M on N. From now on we write $M \simeq N$ when M is diffeomorphic with N.

Now we consider the function $f_{t}(p)=\frac{1-t}{2} g(p)+\frac{1+t}{2} h(u p)$, for $p \in M$. Then from the above we have

Lemma 1. In the locus of stational points of f_{t} the number of the points of type $(1,2)$ is equal to the number of the points of type $(2,1)$.

If $x_{i}=0 \quad(i=1,2,3)$ is a super stational point of f_{0} and $|t|$ is sufficiently small we can reform f_{t} a little in a neighborhood U containing $(0,0,0)$ and $\left(-2 \sqrt{-c_{1} t}, 0,0\right)$ so that f_{t} has no stational point in U. And conversely if f_{t} is regular in U we can reform f_{t} a little in U so that f_{t} has two stational points as mentioned above. From these by reforming f along suitable pathes we can change the locus of stational points so that we have

Lemma 2. For the function f there exists a function \bar{f} satisfying the following properties:
a) For every positive number ε we can take a sufficiently small positive number δ so that $\left|\bar{f}_{-1+s}-f_{-1+s}\right|<\varepsilon$ and $\left|\overline{f_{1-s}}-f_{1-s}\right|<\varepsilon$ for $0 \leqq s \leqq \delta$.
b) The t-coordinates of all stational points of type $(1,2)$ or $(2,1)$ are -1 or 1 and the values of \bar{f} at these points are always 0 .

Introduce in M a Riemannian metric

Fig. 2 and consider stream lines which are normal on every equi-potential surface of \bar{f}_{t}. If necessary by reforming \bar{f}_{t} in tubular neighborhoods of stream lines which flow out from or flow into stational points of type (1) or (2) and in neighborhoods of stational points of type (0) or (3), we get
Lemma 3. We can make \bar{f} in Lemma 2 have the property c)
besides a) and b):
c) The values of \bar{f} at stational points of type (0), (1), $(0,1)$ or $(1,0)$ are always negative and the values of \bar{f} at stational points of type (2), $(3),(2,3)$ or $(3,2)$ are always positive.

Let m be the number of stational points of type $(1,2)$ and G_{k} $(k=1, \cdots, m)$ small solid cylinders in D. Since by $\sigma \Sigma \partial G_{k} \frown \partial D$ is identified to $\sigma\left(\Sigma \partial G_{k} \frown \partial D\right) \subset \partial D^{\prime}$ we cut out ΣG_{k} from D and bring it to ∂D^{\prime}, write it $\Sigma \sigma G_{k}$, and paste $\Sigma \partial G_{k} \frown \partial D$ on $\sigma\left(\Sigma \partial G_{k} \frown \partial D\right)$ by σ.

Fig. 3
Denote by $\bar{\sigma}$ the identifying map of $\partial\left(D-\Sigma G_{k}\right)$ to $\partial\left(D^{\prime} \smile \Sigma \sigma G_{k}\right)$ obtained from σ by the above operation.

Putting $M_{\dot{\delta}}=\left\{p \mid \bar{f}_{\delta}(p) \leqq 0\right\}$ and $M_{\dot{\delta}}^{\prime}=\left\{p \mid \bar{f}_{\dot{\delta}}(p) \geqq 0\right\}$, we have $M_{\dot{\delta}} \simeq D$ $-\Sigma G_{k}, M_{\delta}^{\prime} \simeq D^{\prime} \smile \Sigma \sigma G_{k}$ and $M \simeq\left(D-\Sigma G_{k}\right) \asymp\left(D^{\prime} \smile \Sigma \sigma G_{k}\right)$. Similarly we have $M_{1-\delta} \simeq D-\Sigma G_{k}, M_{1-\delta}^{\prime} \simeq D^{\prime} \smile \Sigma \tau G_{k}$ and $M \simeq\left(D-\Sigma G_{k}\right) \cup\left(D^{\prime} \smile \Sigma \tau G_{k}\right)$. Since the boundary ∂M_{t} is a submanifold of M and moves continuously with respect to t there exists a transformation of M which map M_{δ} on $M_{1-\delta}$. We can assume without loss of generality that $\sigma G_{k}=\tau G_{k}$. And thus we have

Theorem. If $D_{\sigma}^{\smile} D^{\prime} \simeq D_{\tau} \smile^{\prime}$ then for a sufficiently large integer m there exist transformation y of $D-\sum_{1}^{m} G_{k}$ and transformation z of $D^{\prime} \smile \sum_{1}^{m} \sigma G_{k}$ such that $\bar{\sigma} y=z \bar{\tau}$ where $\bar{\sigma}$ or $\bar{\tau}$ is the identifying map of $D-\Sigma G_{k}$ to $D^{\prime} \smile \Sigma_{\sigma} G_{k}$ obtained from σ or τ.

