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1. Introductiom Let R be an arbitrary open Riemann surface of
finite genus g. We shall denote by the class of semi-exact canonical
differentials" (or integrals of these) on R, and by an arbitrary divisor
of finite order d[ on R. Then, with differentials and integrals
(functions) of $, the following Riemann-Roch’s theorem was established
by Prof. Kusunoki: )

where A[-I denotes the number of linearly independent (in the real
sense) functions e 9, which are single-valued on R and multiples of -,
and B[J the number of linearly independent differentials e which
are multiples of . If we take a divisor __pr (Org, PeR) we
have therefore B[PJ2(g--r), in particular, B[P_O. In the present
paper, we shall show that the set of the points where B[P--O is
dense in R, and the properties of the points. Theorem 3 shows the
existence of parallel slit mappings under an additional condition on the
boundaries. And finally, some remarks on curves in R and points lying
on the boundaries will be given.

2. Theorem 1. The set of the points at which B[_P--O is
dense in R.

Proof. If the theorem is not true, there is an open set U in R
which does not contain any point where B[P--O. Let P0 be an
arbitrary point in U. In terms of a local parameter z--(P)(q(Po)--O)
about P0, each of the 2g basis differentials (e (3"=1,2,..., 2g) of the
first kind on R, can be represented as -f(z)dz, where the f(z)
(j’--l, 2,..., 2g) are linearly independent analytic functions of z-=xZiy
about P0. We consider the following real ftnction which is analytic
with respect to and y:

’2ga" 2g’ ’2g" 2g ’2g 2g

where

1) Cf. Kusunoki [3, pp. 241-242], and Nevanlinna [4.
2) Kusunoki [3, Theorem 8], and Kusunoki [2].
3) The existence of these basis differentials was verified in Kusunoki [3, Theo-

rem 1.
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Ref(z) Imf(z)

R]:-- Ref(z). and I]:- Imf(z). (j-O, 1,..., g--l)
(k-1, 2,..., 2g),

Ref)(z) Imf)(z)
here f) denotes the j-th derivative of f and f) the function f itself.
The V(z) vanishes at a point P if and only if BP >0. Therefore
we see V(z)=---.O on U. Then, we can conclude that the f(z) (j--l, 2,
.., 2g) are linearly dependent, which leads us to a contradiction.

The proof can be done as follows. We shall denote by V(z) the
determinant which consists of the first r rows and r columuns of the
V(z). Since V.(z)O on U, there must be such k, l<tcg, for
which V.(z)=---O, but V.(z)O for every , lr<k. There may be
the following three cases.

R /.o1 ) V.(z)O, V.(_(z) =0, V._(z)-O and :- -’"R:-

Since V_)(z)0, we can find an open set U’( U) on which V.<_)(z)
0. Then, there are 2k--1 real functions u(z)(j--1,2,...,2k--1)
which are analytic with respect to x and y such that

2--1

u(z) Ref]r)(z)-0
: (r--O, 1,... k--l)2k--1, u(z) Imf(z)--O

are satisfied on U’. Dividing these identities by u._(z)-- V.(_)(z) 0
we get

27--2

] v(z) Refr(z)H-Ref._(z)=O= (r--O, 1... k--l)1
__

v(z) Imf")(z)+Im fi._l(z)--O

where v(z)--u(z)/u_(z) (j=l, 2,..., 2/--2). By differentiating (1)
with respect to x and using the identities which can be obtained from
(1) by putting r+l for r, we obtain

-’ av(z), -Ref]"(z)- 0= x
(r=0, ,..., -2).’- 3v(z)] Imf[)(z)-- 0=

Since the determinant V.(_)(z) of the coefficients of this system of

equations is not zero on U’, we have 3v(z)--O, that is, v(z)=----cx
(real constants) (j- 1, 2,..., 2k--2) on a curve y, corresponing to
y--constant. Therefore we have

2--2

cf(z) +f._ (z)-- 0
---1

4) Cf. Kusunoki [3, p. 255J.
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on y, and so is on U’. This shows that the f,f,...,f are linearly
dependent.

2) V(z)O, V.(_)(z)0 and V_(z) 0.
By differentiating V.(z)=---O by x and y respectively, we have

2k 2k" v2 2k v2k 2k
(2)

and

(8)
R [,0 lk-rk-2T

]o [o2k 2k v2k 2k v2k 2k l"
Forming the derivatives o the seeond order of V(z)O with respeet
to and , we can easily verify that

(4) i0 o
__

This shows that there are unetions a(z) and b(z) (j--0, 1,..., }--2;
such that

{a(z)R;+b(z)I}+a(z)R+b(z)IO.

Now it is proved that the determinants in (3) vanish in U. Indeed,
if a(z)O or b(z)O, they vanish obviously. In ease of a(z)+0 and
b(z) +0, we can represent I by R, I,. R I- and R as

(5) gb( =o{a(z)R;+b(z)I}+a(z)Rg
and from (2), (3) and (5), we have

a(z) RhI:.
b(z)

b(z)

b(z) 3 ’
which shows that the determinant on the ]eft hand side must vanish
identically. Since V_(z)+0, we have therefore

u(z) Ref"(z)- 0 (r- 0, ,...,
us(z) ImfJ’(z)--0 (r-O, 1,..., k--l)

and the linear dependence o the f(z) (j--l, 2,..., 2g) can be verified
quite analogously s in the above-mentioned ease.

3) V(z)O, V( )(z)+O, V_(z)O but R
: + o.
By the same reasoning as in 2) from (2), (3) and (4), we have
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and

u(z) Ref(z)-O (r-0, 1,...

u(z) Imf](z)--O (-O, 1,..., k)

where u.(z) R-I- R-_I-_I-_\ O. The linear dependence of
the fj(z) (3"-- 0, 1,..., 2g) can be concluded analogously, q.e.d.

:o According to this theorem, we can always take a point P on
R such that BP--O, hence A_P-]--2 by Riemann-Roch’s theorem.
This means the following

Theorem 2.5 For any point P on a dense subset of R, there
does not exist any single-valued functione on R which has a single
pole of order at most g at P. At such point PeR the identities
BPr--2(g--r) hold for every r, Or_g. This shows that BPr
--BPr/I--2 for r, Or<g.

Proof. By Riemann-Roch’s theorem, we have BP2(g--r)
(0rg). Now suppose that there is a number r (0<:rg) such that
Bpr>2(g--r), then we have AP-r2. But this is incompatible
with the fact that AP---2, q.e.d.

If we choose a point P e R such that BP--O, we have AP
--4. This shows by Theorem 2, that there are two linearly independent
single-valued functions e 9 on R, each of which has a single pole of order
just g+l at P. On the other hand, when the genus of R is finite and
q is the number (counted with multiplicities) of poles of a single-valued
function fe on R, f is at most q-valent on R.) Therefore each of
these functions gives a conformal mapping of R onto a domain in a
(g+ 1)-sheeted covering surface of the sphere. Further if the boundaries
of R consist of a finite number of closed Jordan curves, the images of
the boundaries by these functions are slits along linear segments which
are parallel to the imaginary axis. When we multiply these functions
by i, we get conformal mappings of R onto covering surfaces of the
plane, which are (g+l)-sheeted and have slits parallel to the real axis.
Thus the following theorem is established.

Theorem :. Suppose that the boundaries of R consist of a finite
number of closed Jordan curves, then there exist conformal mappings
of R onto covering surfaces of the plane, which are (g1)-sheeted and
have slits along parallel segments. We can take a point P e R, as a
pole of the functions, arbitrary near the prescribed point, and when
we fix a point P at which B[P=O as a pole of the functions, there
are two such .functions which are linearly independent.

5) This theorem corresponds to the classical Weierstrass gap theorem for the points
where B[PaJ=O. Cf. Springer [5, Theorems 10-18, p. 272J.

6) Kusunoki [3, (ii), p. 250].
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4. Next, we take any analytic curve y in the interior of R. If
a point P0 such that B[P--O lies on y, there may exist at most a
finite number of points on y such that B_P 0. Otherwise, the set
of such points has a cluster point P on . Let z be a local parameter
about P which brings P to 0 and represents " by y-=0, so the V2(z)
may be considered as a real analytic function of x on the intersection
of and the parameter neighbourhood of P, and it is zero at all points
where B[P>O. Then, we have V.(z)-O on ’. But this is con-
tradictory to the fact that B[Po3-0. Therefore we have the following
two cases:

i) There are at most a finite number of points at which B[P
0, P.

ii) At all points Pe, B[PO.
But we can easily see that the second case may happen only for a

countable number of curves in the interior of R. In fact, under the
consideration of i) and Theorem 1, we can find a neighbourhoocl about
any point P e R, whose boundary curve intersects only a finite number
of such curves. And the fact that there are only a finite number of
such closed curves in the neighbourhoocl is easily verified by using i)
and Theorem 1.

o We shall now consider the boundary curves F of R. Suppose
G is an analytic curve contained in F. For every interior point P of
C, we can prove that B[P]2g--r (0r2g). To see this, we choose
a local parameter z about P, such that (P)=0 and C corresponds

to y=---0. Let f(z)dz, and we continue f(z) as-f() across C
a little outside of R. On C we have Re.0, i.e. Re f(z)--0 and
Refff(z)--0 (j-- 1, 2,..., 2g; k= 1, 2,...). The number of linearly in-
dependent vectors (c, c,..., c) with 2g real constants which fulfill
the system of equations:

2g

] c Imf(z)--0 zeC, (k=0, 1,..., r--l)

is equal to BP and this is :>2g--r for r, Or2g.
On an analytic curve included in F, there does not exist, except

at most a finite number of points, any point where B[P3 >0. Indeed,
suppose that there exist an infinite number of such points on C, then
they have a cluster point, say P0, on C. We select a suitable local
parameter z which represents C by y0. Then, the following real
analytic function

V x IIi -2,,

must vanish identically on C. But the V(x) is Wronskian determinant
of the functions Imf(x), Imf,(x),.:., Imfi.(x), and its vanishing identi-
cally implies that they are linearly dependent, which is absurd.
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Therefore for any boundary point PC, we have obtained the
inequality; B[Pg>O. We consider the case g=l. Then for every
interior point P of R, B[P--2g--2--O. If there exists a point PeR
at which B[P>O, there are single-valued functionse which have a
single pole of order at most g, and such a point P corresponds to the
classical Weierstrass point.) In the case g:>2, we are able to give an
example which shows the existence of such a point.

Let F be a two-sheeted Riemann sphere with 2g+2 branch points
z, z,. ., z/, z/ which are on the real axis. We remove disjoint n
closed intervals which do not contain z on the line x--Re z from
one sheet of F, and we take the remainder as R, so this is an open

Riemann surface of genus g with n boundaries. Then 1 is a
Z--Z.

single-valued function on R with single pole of order 2 at z. Let
the point corresponding to z be P, then A[P-2, hence A[P->2,
thus we have B[P >0 by Riemann-Roch’s theorem.

We do not know yet, in general, whether there be an interior
point such that B[P 0, and moreover, a number of such points in
this case.

In conclusion, the author wishes to express her hearty thanks to
Professors A. Kobori and Y. Kusunoki for their kind advices and
guidance during this research.
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