74. On the Theory of Non-linear Operators

By Sadayuki YAMAMURO Hokkaido University (Comm. by K. KUNUGI, M.J.A., June 13, 1960)

In this note, we consider the eigenvalue problem of some kinds of non-linear integral operators of Hammerstein type. In §1, we will give a general principle, and, in §2, we will apply it to the case of integral operators of Hammerstein type defined on Banach function spaces.

§1. Let R be a Banach space¹⁾ and \overline{R} be its conjugate space. For $\phi \in R$ and $\Phi \in \overline{R}$, we denote the value of Φ at ϕ by (Φ, ϕ) .

A functional (in general, non-linear) $F(\phi)$ ($\phi \in R$) is said to be Fréchet-differentiable at ϕ_0 if there exists an operator grad $F = \mathfrak{f} \in (R \to \overline{R})$ such that

 $F(\phi_0 + \phi) - F(\phi_0) = (\mathfrak{f}\phi_0, \phi) + r(\phi_0, \phi),$ $\lim_{\|\phi\| \to 0} \frac{|r(\phi_0, \phi)|}{||\phi||} = 0.$ $F(\phi) \text{ is said to be increasing}^{2^{\mathfrak{d}}} (decreasing) \text{ if }$ $\lim_{\|\phi\| \to \infty} F(\phi) = +\infty \quad (-\infty).$

A linear operator $K \in (R \to \overline{R})^{8}$ is said to be symmetric if $(K\phi, \psi) = (K\psi, \phi) \quad (\phi, \psi \in R);$ positive definite if $(K\phi, \phi) \ge 0 \quad (\phi \in R).^{4}$

Theorem 1. Let R be a reflexive Banach space and $F(\phi)$ be convex, increasing, F(0)=0 and Fréchet-differentiable at any point of R. Let K be completely continuous, symmetric and positive definite. Then, for any number $\rho > 0$ there exists a number $\lambda_{\rho} > 0$ and an element $\phi_{\rho} \neq 0$ such that

$$K\phi_{\rho} = \lambda_{\rho} \delta\phi_{\rho}, \quad F(\phi_{\rho}) = \rho$$

Proof. For any $\rho > 0$, put

$$V_{\rho} = \{\phi \in R : F(\phi) \leq \rho\}.$$

Then, V_{ρ} is weakly closed and bounded. In fact, by virtue of continuity and convexity of $F(\phi)$, V_{ρ} is convex and closed, and the assumption that $F(\phi)$ is increasing implies that V_{ρ} is bounded.

¹⁾ In this note, we consider only *real* Banach spaces.

²⁾ This definition is due to [2, p. 302].

³⁾ By $(R_1 \rightarrow R_2)$, we denote the set of all operators whose domains are R_1 and ranges are in R_2 .

⁴⁾ For these properties of K, see [6], where a kind of eigenvalue problem of such K has been considered.

S. YAMAMURO

Moreover, V_{ρ} contains at least one non-zero element. In fact, take such a $\phi \in R$ that $F(\phi) \neq 0$, then, since $\lim F(\xi \phi) = +\infty$, F(0) = 0 and $F(\xi\phi)$ is continuous as a function of ξ , we can find $\xi > 0$ such that $F(\xi\phi) = \rho$.

Therefore, V_{ρ} is weakly closed, weakly compact (since R is reflexive) and contains at least two elements.

Next, for the linear operator K, we define the quadratic form $k(\phi)$ by

$$k(\phi) = \frac{1}{2} (K\phi, \phi) \qquad (\phi \in R).$$

Then, $k(\phi)$ is weakly continuous, Fréchet-differentiable at any point of R and

grad
$$k(\phi) = K\phi$$
.

Now, consider the functional $k(\phi)$ on the set V_{ρ} . We can find a $\phi \in V_{\rho}$ such that $k(\phi) > 0$, because, for a $\phi \in R$ with $k(\phi) > 0$, $\xi \phi \in V_{\rho}$ for some $\xi > 0$. Therefore, we can find at least one $\phi_{\rho} \neq 0$ in V_{ρ} such that $k(\phi_{\rho}) > 0$ and

 $k(\phi_{\rho}) \geq k(\phi)$ for every $\phi \in V_{\rho}$. If $F(\phi_{\rho}) < \rho$, then, by the fact that F is increasing and $F(\xi \phi_{\rho})$ is continuous with respect to ξ , there exists such an α that $\alpha > 1$ and $F(\alpha \phi_{\rho}) = \rho$. Since ϕ_{ρ} is a maximum point of $k(\phi)$ on V_{ρ} , we have k

$$k(\phi_{\rho}) \geq k(\alpha \phi_{\rho}) = \alpha^2 k(\phi_{\rho}),$$

which is a contradiction. Therefore, $F(\phi_{\rho}) = \rho$. Namely, the functional $k(\phi)$ attains its maximum on the boundary of V_{ρ} . This fact enables us to apply the Lagrange's multiplier rule.⁵⁾ Therefore, we can get λ_o with

$$K\phi_{
ho} = \lambda_{
ho} f\phi_{
ho}$$

Finally, we will prove that $\lambda_{\rho} > 0$. At first, we see easily that $\lambda_{
ho} \neq 0$, because $2k(\phi_{
ho}) = \lambda_{
ho}(\mathfrak{f}\phi_{
ho}, \phi_{
ho})$ and $k(\phi_{
ho}) > 0$. On the other hand, since $F(\phi_{\rho}) = \rho > 0$, there exists $\varepsilon_0 > 0$ such that $F((1 + \varepsilon)\phi_{\rho}) > 0$ $(0 < \varepsilon$ $< \varepsilon_0$). Convexity of F implies that

$$F((1+\varepsilon)\phi_{\rho}) \geq (1+\varepsilon)F(\phi_{\rho}) \geq F(\phi_{\rho}).$$

Hence it follows that

$$({\mathfrak f}\phi_
ho,\phi_
ho)\!=\!\lim_{{\mathfrak s} o 0}\! rac{F((1\!+\!arepsilon)\phi_
ho)\!-\!F(\phi_
ho)}{arepsilon}\!\ge\!0.$$

Therefore, $\lambda_{\rho} > 0$.

§ 2. Let R be a set of integrable functions defined on the interval [a, b]. We assume that R be a Banach space by a norm $||\phi||$ ($\phi \in R$) and the following conditions be satisfied:

R1) If $|\phi_1(t)| \leq |\phi_2(t)|$ a.e. and $\phi_2 \in R$, then $\phi_1 \in R$ and $||\phi_1|| \leq ||\phi_2||$; R2) R is reflexive as a Banach space;

306

⁵⁾ For example, see [3, p. 239].

No. 6]

R3) every Φ of \overline{R} is uniquely represented by an integrable function $\psi(t)$, in other words,

$$(\varPhi, \phi) = \int_{a}^{b} \phi(t) \psi(t) dt \qquad (\phi \in R)$$

for an integrable function $\Psi(t)$ which is determind uniquely except for a set of measure zero.⁶⁰

In the sequel, we denote Φ by its representation function $\psi(t)$.

Next, we consider a Carathéodory function f(t, u) $(a \le t \le b, -\infty < u < +\infty)$, namely, f(t, u) is measurable with respect to t when u is fixed and is continuous with respect to u when t is fixed.

If the function f(t, u) satisfies the following condition:

f1) The operator $f\phi = f[t, \phi(t)]$ is in $(R \to R)$ and continuous, then, we can define a functional $F(\phi)$ as follows:⁷⁾

(*)
$$F(\phi) = \int_{a}^{b} \left[\int_{0}^{\phi(t)} f(t, u) du \right] dt$$

In fact,

$$|F(\phi)| = \left| \int_{a}^{b} \phi(t) f[t, \theta(t)\phi(t)] dt \right|, \qquad 0 \leq \theta(t) \leq 1 \text{ a.e.}$$
$$\leq ||\phi|| \cdot ||f(\theta\phi)|| < +\infty$$

because $\theta \phi \in R$ by R1).

Moreover, $F(\phi)$ is Fréchet-differentiable at any point in R and grad $F=\mathfrak{f}$. In fact, for $\phi, \psi \in R$, we have

 $\leq \|\Psi\| \cdot \|\mathfrak{f}(\phi + \theta \Psi) - \mathfrak{f}\phi\|.$

Since $\theta \psi \in R$ and $\lim_{\| \phi \| \to 0} || \theta \psi || = 0$,

$$\begin{split} & \lim_{\|\psi\| \to 0} \frac{1}{\|\psi\|} \frac{1}{\|\psi\|} \Big| \{F(\phi + \psi) - F(\phi) - (\mathfrak{f}\phi, \psi)\} \\ & \leq \lim_{\|\phi\| \to 0} \|\mathfrak{f}(\phi + \theta\psi) - \mathfrak{f}\phi\| = 0, \end{split}$$

because, by f1), the operator f is continuous.

Now, we can define the non-linear integral operator of Hammerstein type on \overline{R} .⁸⁰ Let a linear operator:

⁶⁾ It is well known that the spaces L_p (p>1) and, more generally, Orlicz spaces with (\mathcal{A}_2) -conditions satisfy these conditions.

⁷⁾ This procedure is due to [2, p. 81].

⁸⁾ See [1].

S. YAMAMURO

$$K\phi(s) = \int_{a}^{b} K(s,t)\phi(t)dt$$

be, as an operator in $(R \rightarrow \overline{R})$, completely continuous, symmetric and positive definite. Let, for a Carathéodory function g(t, u), the operator $g\psi(t) = g(t, \psi(t))$

be in $(\overline{R} \rightarrow R)$. Then the operator $H = K\mathfrak{g}$:

(**)
$$H\psi(s) = \int_{a}^{b} K(s, t)g(t, \psi(t))dt$$

is called the integral operator of Hammerstein type.

Then, we can state, as an application of Theorem 1, the following

Theorem 2. Let the integral operator of Hammerstein type (**) be defined on \overline{R} where the Banach function space R satisfies R1)-R3). Moreover, we assume that the function g(t, u) be strictly increasing with respect to u for fixed t and the inverse function f(t, u) as a function of u satisfy f1) and the functional (*) be increasing. Then, for any $\rho > 0$, we can find $\lambda_{\rho} > 0$ and $\psi_{\rho} \neq 0$ such that

$$H\psi_{
ho} = \lambda_{
ho}\psi_{
ho} \quad and \quad F(g\psi_{
ho}) =
ho.$$

Namely, the operator H has at least one eigenvalue.

Proof. It is easy to see that the operator \mathfrak{f} generated by the inverse function f(t, u) is the inverse operator of \mathfrak{g} . Therefore, for the element ϕ_{ρ} obtained in Theorem 1, the element $\psi_{\rho} = \mathfrak{f} \phi_{\rho}$ is the required eigenfunction.

Remark 1. Naturally, it is possible that the operator H has only one eigenvalue. For example, the operator H considered on L_2 on [0, 1] with K(s, t)=st and g(t, u)=u has only one eigenvalue.

Remark 2. If the functional $F(\phi)$ is not increasing, then there exists an operator H which does not have positive eigenvalue. For example, let R be L_3 on [0, 1], g(t, u)=u and $K(s, t)=\alpha(s)\alpha(t)$ with $\alpha(t)=1/\sqrt{t}$. Then, the operator H has only one eigenvalue 0.

Remark 3. Necessary and sufficient conditions for the operator f to be in $(R \rightarrow \overline{R})$ have been obtained by some authors. For example, when $R=L_p$ (p>1), then $\overline{R}=L_q$, q=p/p-1, and f is in $(L_p \rightarrow L_q)$ if and only if

$$|f(t, u)| \leq \phi(t) + \gamma |u|^{\frac{p}{q}} \qquad (-\infty < u < \infty)$$

for some $\gamma > 0$ and $\phi(t) \in L_q$.

This result was generalized to the case of Orlicz spaces by Vainberg-Shragin [5], and to the case of conditionally complete vector lattice by Shimogaki [4].

It is easy to see that, in Theorem 1, the same method can be applied to the case when the functional $F(\phi)$ is concave and decreasing. In this case, we can find at least one negative eigenvalue. The eigen-

[Vol. 36,

308

309

value problem where the functional $F(\phi)$ is not convex and increasing (or, is not concave and decreasing) will be treated in another paper.

References

- A. Hammerstein: Nichtlineare Integralgleichungen nebst Anwendungen, Acta Math., 54, 117-176 (1929).
- [2] M. A. Krasnoseliski: Topological Method in the Theory of Non-linear Integral Equations, Moscow (1956).
- [3] L. A. Ljusternik und W. I. Sobolev: Elemente der Funktionalanalysis (1955).
- [4] T. Shimogaki: A generalization of Vainberg's theorem. I-II, Proc. Japan Acad., 34, nos. 8, 10 (1958).
- [5] M. M. Vainberg and I. V. Shragin: Nemyckii operator and its potential in Orlicz spaces, Doklady Acad. Nauk (n. s.), **120**, no. 5 (1958).
- [6] S. Yamamuro: On the theory of non-linear operator equations on conjugately similar spaces, Studia Math., 19, 229-248 (1960).