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136. Note on Metrizability and n.Dimensionality

By Kei5 NAGAMI
Ehime University, Matsuyama

(Comm. by K. KUNUGI, M.J.A., Nov. 12, 1960)

This note gives firstly some metrizability conditions which are
trivial corollaries of J. Nagata’s general metrization theorem (1).
Our metrization theorem can be applied to criterions for n-dimension-
ality of metric spaces with the aid of the concept ’cushioned refine-
ments’ obtained by E. Michael (2). One of the benefits of this
interesting concept is to include both closed closure-preserving refine-
ments and open star-refinements (cf. Remark 1.5). Thus our criterion
for n-dimensionality provides us with more general form than [4,
Theorem 7.2 and Theorem 7.5_ where closed closure-preserving refine-
merits and open star-refinements are essentially used respectively. It
is to be noted that throughout this note a covering need not be open.

1. Metrizability. Lemma 1.1 (J. Nagata’s general metrization
theorem [5, Theorem 1). In order that a topological space R be metri-
zable it is necessary and sucient that one can assign a neighborhood
basis { Ui(x); i-- 1, 2,... }, neighborhood systems {S(x); i-- 1, 2,...} and
{S(x); i=l, 2,...} satisfying the following conditions.

1 y U(x) implies S(y)S(x) (=the empty-set).
2 y S(x) implies S(y) Ui(x).

Theorem 1.2. In order that a topological space R be metrizable
it is necessary and sucient that there exists a sequence of coverings
(C), i=1, 2,..., of R which satisfies the following conditions.

(3) For any point x of R and any neighborhood U of x there
exists i with S(x, (C),) 1) U.

(4) For any point x of R and any i there exists j with x
S(R-S(x, (C),), (C)).

Proof. Since the necessity is clear, we prove only the sufficiency.

i) When x6 S(R- S(x, (C)), (C).), let us put

S(x) R-- S(R-- S(x, $,), 22.),
S(x,

ii) When xeS(R-S(x, (C)),(C).), let us put
U,(x) Z(x) R,

=S(x,

1) S(x, gJi)=-[H; xeHei}. When R1 is a subset of R, S(RI,i)=[H; RH
4=, He g3}.
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Then by (3) and (4) {U(x); i, j=l, 2,...} is a neighborhood basis of
x and {S(x); i, 3"-1, 2,...}, k-l, 2, are neighborhood systems of x.
To verify (1), let y U(x). Then yeS(x, ) and hence yR--S(x, ).
Since S(x)-..S}(y)- (R--S(R--S(x, (C)), (C)))S (y, (C)) (R-S(R--S(x,
(C)), (C)))S(R-S(x, g2), )-, (1) holds good. Next let us verify (2).
In case ii), (2) clearly holds. Hence we consider only the case i). Let
y S}(x)- R--S(R--S(x, ), ). Then y 6 S(R-S(x, ), (C)) and hence
S(y, )(R-S(x, ))-. Therefore S(y)-S(x, (C))S(x, )- U(x)
and (2)holds good. Thus by Nagata’s general metrization theorem
we conclude that R is metrizable and the proof is completed.

Remark 1.:. It is almost evident that the condition (4) of the
theorem can be replaced with any one of the following conditions.

(5) For any point x of R, {S(S(x,),); i,j=1,2,...} forms
a neighborhood basis of x.

(6) For any point x and any i there exists j and a neighbor-
hood U of x such that S(D, (C))S(x, (C)).

Remark 1.4. When g2, i-l, 2,..., are open coverings, Theorem
1.2 has already been proved by K. Morita [2, Theorem 4. I am
informed by Professor Morita that his theorem yields Nagata’s general
metrization theorem by very simple argument.

Definition 1.; (E. Michael 1). Let 59--{H; aA} and
flB} be coverings of a topological space R. If a map f of B into
A satisfies the condition:

(7) for any flB HHc),
then we call f a refine-map. If f" B-->A satisfies the condition:

(8) for any subset B of B {H; fleB]{H.; af(B)},
then we call f a cushion-map. When there is a cushion-map, we call
2 a cushioned refinement of

Remark 1.6 (E. Michael 1). The following two cases are re-
markable examples of cushioned refinements, i) When 592 is open and
*-{S(H, 2);H592} refines , . is a cushioned refinement of (C).
ii) When 592= {H; H 592} refines 2j and 2 is a closure-preserving

covering, i.e. one in which [H; fle B}-- [H; fle B} holds for any
subset B of B, then (C)2 is a cushioned refinement of (C). Especially

when (C)2 refines (C) and 59. is locally finite, then (C)2 is a cushioned
refinement of

Lemma 1.7. Let --[H.; a A} and .-{H; B} be coverings
of a topological space R such that is a cushioned refinement of. Then the following mutually equivalent conditions evidently hold.

(9) For any point x of R, xS(R-S(x, ), 2).
(10) For any point x of R there exists a neighborhood D of x

with S(D, (C)2)S(x, (C)).
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By this lemma we get at once the following proposition as a
corollary of Theorem 1.2.

Corollar 1.8. In order that a topological space R be metrizable
it is necessary and sucient that there exists a sequence of coverings

(C)i, i--l, 2,..., of R which satisfies the following conditions.
(11) For any point x of R and any neighborhood U of x there

exists i with S(x, 22i) U.
(12) For any i / is a cushioned refinement of .
Let us take this occasion to apply Nagata’s general metrization

theorem to criterions for the normality of open coverings. To this
aim we restate Lemma 1.1 as follows.

Lemma 1.9. In order that an open covering (C)o of a topological
space R be normal ) it is necessary and sutcient that there exist for
any point x of R neighborhood systems U(x); i--1, 2,... }, [S(x); i-1,
2,...] (k=l, 2) of x which satisfy the following conditions.

(13) For any Hero and any xeH there exists i with U(x)H.
(14) For any i, j and any xeR there exists k with U(x)S}(x)

(15) For any i, any xeR and any yeS,(x) it holds that S}(y)

(16) For any i, any xeR and any y U(x) it holds that S}(y)
=.

By an analogous way to the proof of Theorem 1.2 we get the
following two propositions as corollaries of the above lemma.

Theorem 1.10. An open covering o of a topological space R is
normal if there exists a sequence of coverings , i=1, 2,..., which

satisfies the following conditions.
(17) (C) is a cushioned refinement of (C)_, i=1, 2,....
(18) x, yeS(z, /1) yields xS(y, ), i--1, 2,....
(19) For any i, any subcollection of (C) and any x eR

--{H;He} there exists j such that S(x,(C)j)R--{H;He}.
(20) For any He(C)o and any xeH there exists j with S(x, j)H.
Theorem 1.1 1. An open covering o of a topological space R is

normal if there exists a sequence of coverings , i--1, 2,..., which

satisfies the following conditions.
(21) For any He(C)o and any xeH there exists j with S(x, 59)H.

2) An open covering 0 is called normal if there exists a sequence of open cover-
ings gJi, i-1,2,..-, which satisfies the following mutually equivalent conditions, i)
For any i gJ*+I=[S(H, gJi+l); He’i+1} refines gJi. ii) For any i g3 is locally finite and
elementary open and gJ*+l refines gJi, where gJ is called elementary open if every
element HegJ is expressible as H=x;f(x)>O} for suitable real valued continuous
function f defined on R. iii) There exists a pseudo-metric p on R such that
(x, y)<l} x e R}refines g20.
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(22) For any i and any xeR S(x, (C)) is a neighborhood of x.
(23) For any i and any xeR there exist j and k with S(S(x, (C)),
 S(x,

2. n-Dimensionalit-. Theorem 2.1. In order that a topologi-
cal space R be a metrizable space with dim R n it is necessary
and sucient that there exists a sequence of coverings , i=1, 2,...,
of R which satisfies the following conditions.

(24) For any i + is a cushioned refinement of .
(25) lira inf order (x, ))n+l for every xeR.
(26) For any xR and any neighborhood U of x there exists i

with S(x, @) U.
Proof. a) Since the necessity is clear, we prove only the suf-

ficiency. Let =[H(a); aeA}, i=1, 2,..., be a sequence of coverings
satisfying (24), (25), (26). By Corollary 1.8 R is metrizable.) Let
us prove dim Rn.

b) Let f+, A+A (i=1, 2,...) be a cushion-map. For any
i, with i put f=f+,...f_,_f,. Let f:AA be the
identity-map. Consider A (i=1,2,...) as a topological space with
the discrete topology. Then {A,f} {A,f; i, j= l, 2,..., ij} forms
an inverse limiting system. Let A

H(a)} and (i=1, 2,...) the projection of A into A.
c) Let :AR be a map defined by (a)=H((a)). Then

g=l

(a) consists of one and only one point for every aeA by the defini-
tion of A and, the condition (26). To prove is onto, let x be an
arbitrary point of R. Let A(x)={a;xeH(a)e@}. Then A(x)
for every i and f(A(x))A(x) for any i, j with ij. Hence {A(x),
f]A(x)} forms an inverse limiting system. By the condition (25)
there exists a sequence of increasing positive integers 1’, 2’,... such
that A(x) consists of a finite number of indices for every i. Hence
lim {A,(x), f,[A,(x)} . Since A(x) lim {A(x),fA(x)} is essentially
the same with lira [A,(x),f,,]A,(x)}, we get A(x). Let a be an
arbitrary point of A(x). Then evidently (a)=x and we know that

is onto.
d) Let i be an arbitrary positive integer and a an arbitrary

index of (A). Put

3) dim R denotes the covering dimension of R. We call dim R<_n if and only if
every finite open covering of R can be refined by an open covering whose order is at
most n+l. As to the order of a covering see the footnote below.

4) order (x, gJi) is the number of elements of gJi which contain x. The order of
g) is the supremum of {order (x, g)); x R}.

5) If we hope, the metrizability of R can be proved once more at the end of the
proof with no use of the results of 1. Hence it is not absolutely necessary to utilize
Corollary 1.8.



No. 9] Note on Metrizability and n-Dimensionality 569

(27) F(c)-- ({H(/); fj(/)-- }).

Since for every 3"_> i {H(/3); fj/1,()-} {H(/.); fj(-)-} by the

condition (24), r(a) ({H(); f()--a}) ({H(); f()--})= =+
({H(); fy()-- ,})-- F(,) and hence F(,) is closed.

Let x be an arbitrary point of R; then by e) there exists a point
a of A with (a)-x. Evidently xeF(z(a)). Thus

(28) ,--{F(,); ,=,(A)}, i--l, 2,...
is a sequence of closed coverings of R. Moreover for any j, i with
ji and any e(A) it evidently holds that F(,)F(fy(a)). Thus
y refines .

e) Let us show that for any i the order of is at most n+l.
Let x be an arbitrary point of R. By the condition (25) there exists
j with j2i such that order(z,)n+l. Since for any
F(a)H(a), we get order (x, Fy)n+l. Since order (x, )order
), we get order (x, ) n+ 1.

f) To show that for any i is closure-preserving, let B be an
arbitrary subset of =(A). We put

(29) Ey,--{H(fl); f71()}, j--i, i+l,. ., aer(A),
(30) Z-{F(.);.B}- (E.).
(31) -- L E.).

Then evidently A g.
To prove /r z/ let x be an arbitrary point of fz. By the condi-

tion (25) there exists /c>_i with order (x, (C))gnq-1. Since for every
cr(A) E.E/,..., we get for any l>_k order(x,{E.;aB})
g order (x, {E.; a e B}) g order (x, )g n-t- 1. Let

(32) B(x)-{a; xE., aeB}, j--i, i+l,.
Since B(x)B/(x)... and for every l>_k B(x) is a non-empty

finite set of indices, B(x) is non-empty. Hence there exists an
=i

index a(x) of B such that a(x)B(x) for every j>_i. Therefore

x E,<) and hence x e (Ey.)--A. Thus we get gA and hence

Since V ( {H’(fl); fl f(a)})) ( {H(); fle7(B)})

({H();f(B)})V, we get g--g. By (33) we also get

A--A. Thus we can conclude that is closure-preserving.
g) For every i is a closure-preserving point-finite closed

6) Evidently for any 3", i with j<i j is a cushioned refinement of Ji with a
cushion-map fy:.
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covering by d), e), f). Hence it is almost evident that is a locally
finite closed covering. Moreover the sequence , i--l, 2,..., satisfies
the following three conditions.

(34) For any i + refines .
(35) For any i order (x, )<:n+l for every xR.
(36) For any xeR and any neighborhood U of x there exists i

with S(x, ) U.
Therefore we get dim R<_n by [4, Theorem 3.2 v) and the proof is
completed.
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