131. On Quasi-normed Spaces over Fields with Non-archimedean Valuation

By Tomoko Konda

(Comm. by K. KUNUGI, M.J.A., Nov. 12, 1960)

The normed spaces over the fields with non-archimedean valuation were established by A. F. Monna [1]. In this paper, we shall consider the quasi-normed spaces over the fields with non-archimedean valuation.

Let K be a complete field with a non-archimedean valuation $|\lambda|$. We shall fix this field K throughout this paper.

- 1. General properties. **Definition 1.1.** Let E be a linear space over a field K. An application ||x|| of x is called a non-archimedean (n.a.) quasi-norm with the power r if it satisfies the following axioms:
 - 1. ||x||=0 if and only if $x=\theta$.
 - 2. $||x+y|| \le \max(||x||, ||y||)$ for all $x, y \in E$.
 - 3. $||\lambda x|| = |\lambda|^r ||x||$ for $\lambda \in K$ and $x \in E$, (r real $0 < r < \infty$).

Let ||x|| be a n.a. quasi-norm with the power r and let d(x, y) = ||x-y||, $x \in E$, $y \in E$ then d is the distance on E. A linear topological space which is defined by the distance d is called a n.a. quasi-normed space with the power r.

Definition 1.2. Let E be a n.a. quasi-normed space with the power r and if E is complete with the distance d, E will be called a n.a. (QN) space with the power r.

We can prove the usual properties of quasi-normed spaces in n.a. quasi-normed spaces by the same ways [2-4] and [5]. Therefore we have the following theorems.

Theorem 1.1. Let E be a n.a. (QN) space with the power r and N a closed subspace, then the quotient space E/N is a n.a. (QN) space with the power r.

Theorem 1.2. If E is a n.a. quasi-normed space with the power r then the space may be regarded as a dense subspace of a n.a. (QN) space \hat{E} with the power r.

We omit the proofs of the general theorems since they are proved by the same way as the archimedean case.

2. Linear transformations. Let E, F be two n.a. quasi-normed spaces with powers r, s and T a linear transformation which maps E into F.

Theorem 2.1. A linear transformation T is continuous if and only if there exists a positive number M for which the following inequality holds:

$$||T(x)||_s \leq M ||x||_r^{s/r}$$
.

Let $\mathcal{L}(E,F)$ be the set of continuous linear transformations which map E into F, these being two n.a. quasi-normed spaces with powers r,s then $\mathcal{L}(E,F)$ is a linear space. The application $T \to ||T||$ is a n.a. quasi-norm in $\mathcal{L}(E,F)$ and $\mathcal{L}(E,F)$ is a n.a. (QN) space.

- 3. Quasi convex sets. **Definition 3.1.** Let E be a linear space over a field K. An application p(x) is called a n.a. quasi-seminorm with the power r if it satisfies the following axioms:
 - 1. $p(x+y) \le \max(P(x), p(y))$ for all $x, y \in E$.
 - 2. $p(\lambda x) = |\lambda|^r p(x)$ for $\lambda \in K$ and $x \in E$, (r real and $0 < r < \infty$).

Suppose that there exists a n.a. quasi-semi-norm p(x) with the power r in E. The set $A = \{x \in E; p(x) < 1\}$ has the following properties:

- 1. A is symmetric.
- 2. Let $x, y \in A$, we have $\lambda^s x + \mu^s y \in A$ for all $\lambda, \mu \in K$ such that $|\lambda| \le 1$, $|\mu| \le 1$, where s is 1/r.
 - 3. For any α , β such that $|\alpha| < |\beta|$, we have $\alpha^s A + \beta^s A \subset \beta^s A$.
 - 4. For any α , β such that $|\alpha| < |\beta|$, we have $\alpha A \subseteq \beta A$.
- 5. For any α , $\alpha \neq 0$, the set αA is equivalent to the set of element $x \in E$ such that $p(x) < |\alpha|^r$.
- 6. A is absorbant: For any $y \in E$ there exists $\alpha > 0$ such that $y \in \lambda A$ for all $\lambda \in K$ satisfying $|\lambda| \ge \alpha$.
- 7. We shall consider the norm determined by A. Let $y \in E$ be given and consider a set of $\lambda \in K$ such that $y \in \lambda^s A$. The set is not empty. Let $\inf_{y \in \lambda^s A} |\lambda| = C$. We have the following relation on C and p(y).
 - I. The valuation of K is dense.

For any λ such that $|\lambda| > C$, we have $y \in \lambda^s A$ and $p(y) < |\lambda|$. Since the valuation is dense we have $p(y) \le C$. C = 0 implies p(y) = 0. Suppose $C \ne 0$, for any μ such that $|\mu| < C$, we have $y \notin \mu^s A$. Therefore $p(y) \ge |\mu|$ and $p(y) \ge C$. We have p(y) = C.

II. The valuation of K is discrete.

Suppose that the valuation of elements of K is defined by the power of number $\rho > 1$. Since the valuation of K is discrete, there exists $\lambda_0 \in K$ such that $C = |\lambda_0|$. Let $|\lambda_0| = \rho^k$. For any λ such that $|\lambda| = |\lambda_0|$, we have $y \in \lambda^s A$. Therefore $p(y) \le |\lambda_0|$. C = 0 implies p(y) = 0. Suppose $C \ne 0$, for any μ such that $|\mu| < |\lambda_0|$ we have $y \notin \mu^s A$. Therefore

$$p(y) \ge |\mu|$$
, and $p(y) \ge \rho^{k-1}$,

we have

$$\rho^k > p(y) \ge \rho^{k-1}$$
.

Definition 3.2. (1) A subset A of a linear space E over the field K has the property (K^s) if $x \in A$, $y \in A$ implies $\lambda^s x + \mu^s y \in A$ for

all $|\lambda| \leq 1$, $|\mu| \leq 1$.

- (2) A subset A in E is called a quasi- K^s -convex, either A has the property (K^s) or A is denoted by the form x_0+A^* whenever A^* has the property (K^s) and x_0 is a fixed vector.
- (3) A subset A in E is called an absorbant quasi- k^s -convex, either A has the property (K^s) and is absorbant or A is denoted by the form x_0+A^* whenever A^* has the property (K^s) and is absorbant and x_0 is a fixed vector.
- (4) Let E be a linear space over the field K. The linear space is called a locally quasi- K^s -convex (topological) space if there exists a base of symmetric and absorbant quasi- K^s -convex sets.

Theorem 3.1. Suppose that there exists a n.a. quasi-semi-norm p(x) with the power r in E. A topology defined by p(x) is a locally quasi- K^s -convex topology, where s is 1/r.

Proof. Let \mathcal{B} be a collection of $V_{|\lambda|} = p^{-1}([0, |\lambda|]) = \{x \in E; p(x) \leq |\lambda|, \lambda \in K\}$. We shall show that \mathcal{B} is a base for E. To prove it, for $\mu \neq 0$, we have

$$\begin{split} \mu V_{|\lambda|} &= \{ \mu x; \ p(x) \leq |\lambda| \} \\ &= \left\{ y; \ p\left(\frac{1}{\mu}y\right) \leq |\lambda| \right\} \\ &= \{ y; \ p(y) \leq |\mu|^r |\lambda| \} \\ &= V_{|\mu|^r |\lambda|}. \end{split}$$

Let $x \in \mu V_{|\lambda|}$ and $|\mu| \leq 1$, then

$$p(x) \le |\mu|^r |\lambda| \le |\lambda|$$

and

$$x \in V_{121}$$
.

Therefore $\mu V_{|\lambda|} \subset V_{|\lambda|}$ for all μ such that $|\mu| \le 1$. On the other hand, let $\alpha = \left(\frac{1}{|\lambda|} p(x)\right)^s$, for μ such that $|\mu| \ge \alpha$

$$p(x)^{s} = \alpha |\lambda|^{s} \leq |\mu| |\lambda|^{s}$$

$$p(x) \leq |\mu|^{r} |\lambda|$$

and

$$x \in \mu V_{|\lambda|}$$
.

Therefore, for any $x \in E$, there exists a positive number α and for all μ such that $|\mu| \ge \alpha$, $x \in \mu V_{|\lambda|}$.

From the following relation,

$$\alpha V_{\frac{|\lambda|}{|\alpha|^r}} = \left\{ \alpha x; \ p(x) \le \frac{|\lambda|}{|\alpha|^r} \right\} = \left\{ y; \ p\left(\frac{1}{\alpha}y\right) \le \frac{|\lambda|}{|\alpha|^r} \right\}$$

$$= \left\{ y; \ p(y) \le |\lambda| \right\} = V_{|\lambda|},$$

we have, for any $V \in \mathcal{B}$ and $\alpha \in (K-0)$, $\alpha V \in \mathcal{B}$.

Moreover, $V_{|\lambda|} + V_{|\lambda|} \subset V_{|\lambda|}$.

Next, we shall show that $V_{|\lambda|}$ is quasi- K^s -convex set. Let $x, y \in V_{|\lambda|}$ and λ, μ be $|\lambda| \le 1$, $|\mu| \le 1$

$p(\lambda^s x + \mu^s y) \leq \max(p(\lambda^s x), p(\mu^s y)) \leq |\lambda|.$

Therefore \mathcal{B} is a collection of symmetric and absorbant quasi- K^s -convex sets. The topology by p(x) is a locally quasi- K^s -convex topology.

References

- [1] A. F. Monna: Sur les espaces normés non-archimédiens I-IV, Proc. Kon. Ned. Akad. van Wetensch., 59, 475-483, 484-489 (1956); 459-467, 468-476 (1957).
- [2] —: Ensembles convexes dans les espaces vectoriels sur un corps valué, Proc. Kon. Ned. Akad. van Wetensch., 61, 528-539 (1958).
- [3] M. Pavel: On quasi normed spaces, Bull. Acad. Sci., 5, no. 5, 479-487 (1957).
- [4] T. Konda: On quasi-normed space. I, Proc. Japan Acad., 35, 340-342 (1959).
- [5] Ion Colojoară: Asupra unei topologu definite cu ajutorul familulor de cvasiseminorme, Acad. Rep. Pop. Romine, 9, 371-383 (1958).