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152. The Space of Bounded Solutions and Removable Singu-
larities of the Equation du+au.+bu,4+cu=0 (c=<0)

By Yoshio KATO
Mathematical Institute, Nagoya University
(Comm. by K. KUNUGI, M.J.A., Deec. 12, 1960)

1. Let D be a bounded domain in the complex z-plane. We
consider a triple (a,b,¢) where a and b are twice continuously dif-
ferentiable functions and ¢ is a non-positive, continuously differentiable
function defined in a domain containing the closure of D.® We say
that such a triple is admissible. Consider the partial differential
equation of elliptic type:

(1) du+-ou,+bu,+cu=0,
where 4=0%0x*4-0%0y*, w,=0ou/ox and u,=0du/dy. Using notations of
exterior differentials, (1) ecan be written as follows:
Lu=d*du—+du a+uf=0,
where a= —bdx+ady and B=cdxdy.

We denote by B(a,b, c; D) the totality of bounded solutions of the
equation (1) in D. Here a solution of (1) is always assumed to be twice
continuously differentiable. Then B(a, b, ¢; D) is a Banach space with
the norm ||u||=sup,|u| (see [1]). Take another admissible triple
(a,b,¢). In this note, we shall prove that B(a,b,¢; D) is isomorphic
with B(a, b, ¢; D) as Banach spaces. In Nakai [5], this comparison
problem was considered for triples (0, 0, ¢) on a Riemann surface under
some condition for ¢. Finally we shall characterize sets of removable
singularities for bounded solutions of (1).”

2. Let {D,}3-; be an exhaustion of D, i.e. D, is a subdomain of

D whose closure D, is contained in D and whose boundary 4D, consists
of a finite number of closed smooth Jordan curves and moreover
{D,}x-, satisfies

D,cD,,, and D= }.jlpn'

Let G,(¢, 2) be the Green function of (1) with respect to D, with pole
at £. It is well known that G,({, 2) is the Green function of the ad-
joint equation of (1)

1* L*y=d*du—dupra+(8—da)u=0

with respeet to D, with pole at z and, for each pair ({,2) in D, the
sequence {G,((, ?)} converges non-decreasingly to G({,z) which is a

1) Functions considered in this note are all assumed to be real-valued.
2) The author extends his hearty thanks to Mr. Nakai for his kind suggestions.
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solution of (1) in z and a solution of (1*) in { (see [3] and [4]).
Moreover G(, 2) is bounded outside a neighbourhood of z as a function
of £. We shall call G({,2) the Green function with respect to D.
Let S be a closed disk with center z in D. Then we can prove
Lemma 1. There exists a positive constant K for each point z
wn D such that
9) +(%,
0

[ <

Sor all n satwfymg Dn:)S where {=E&+11.
Proof. Fix a point z in D. Let u be a solution of (1*) in D,—{z}
and vanishing on dD,. For such a function u, we obtain

(2) du/\*du=d<u*du—~—;—u2a> +u? <ﬂ—%da>.
Integrating (2) on D,—S, we have

(3) ff du,\*duzj‘(u*du——;—uza>+ff u2<,8——;—da>,

since » vanishes on 0D,. Applying (3) to G,(E, ?), we get the assertion
of Lemma 1 from the boundedness of a, b, da/og, 9b/oy, and ¢ in D and
from the uniform boundedness of G,(, 2), 0G,(¢, #)/0¢ and 0G,(, 2)/on
on aS.

Lemma 2. (i) If fis a bounded continuous function in D, then,
for each point z in D,

lim, f f G.(¢, 2)f(©)dedn= f f G(C, 2)f (€)dédy< oo

and

tim, [ [ 22 (¢, 9/ @dsdy= [ [ SF €, ) Qdsdy < .

(il) If a uniformly bounded sequence {f,} of continuous functions
in D converges to a function f defined im D uniformly on every
compact subset of D, then for each point z in D

lim, [ [ 6, (10— f ©)dedn=0

and

lim, fD f aaf;" @ 2(fQ)— f(©)dedn=0.

Proof of (i). We prove the second identity since the first is
trivial. Fix a point 2z in D. By Lemma 1 and Fatou’s lemma, we
can see easily

@ [T ()

For a compact set A of D which contains S, the Schwarz inequality
and Lemma 1 imply



646 Y. Katb [Vol. 36,

| ,,f / aa‘? € ©de dn = f [ (%) ddy
(5) x [[171rdsdy

Dp—A

§K~sug|f}2~(Area of (D,—A))

for sufficiently large n. By the same argument as above, we get, using

@),
(6) 9G (¢, 9 f©dsdy
U,:_A e = F !

aai" (¢, 2) converges to %(C, 2) uniformly on each

2§I{-sug|f|2-(Area of (D—A)).

On the other hand

compact set of D as n tends to infinity. Hence we get
oG oG, -
(7) JI (G =50tz oo

From (5), (6) and (7), we can conclude (i) of Lemma 2.

Proof of (ii). By our assumption there exists a constant M inde-
pendent of n such that |f,({) |<M in D. If we apply (6) with f=f,—f,
we obtain

2
| [ e 00— £z S4RM*-(Area of (D,—4))
Dp—A
On A, the sequence 0G,/3¢-(f,— f) converges to 0 uniformly. Thus we
get the second equality. The first identity is obvious. Therefore, we
can conclude (ii) of Lemma 2.

3. Theorem 1. For any two admissible triples (a, b, ¢) and (a,
b, ¢), Banach spaces B(a,b,¢; D) and B(a,b,¢; D) are isomorphic.
Proof. Let G, 2) and G((,2) be Green functions with respect

to D, and D corresponding to the triple (a, b, ¢) respectively. For a
bounded continuous function f in D, we define transformations 7f and
tf as follows:

T1@)= &)+ [ [ L@ —d)EE A+ (@) —a(e)

X G(&, 2)}e+{00) —bQ) G, )}, 1 (Q)dédy
and

1A =1@)+ - | [[EO—eD)EE A+(@D—a()

X G, 2)}+{(0() —bE) G, )}, 11 ()dédy.
By (i) of Lemma 2, we see that Tf(z)< c and tf(2)< o for each point
z in D. We also define auxiliary transformations 7T,f and t,f of a
bounded continuous function f defined in D, as follows:
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T.f@=f@+5 [[ [@-30)E.L 2

+{(a(®) —a(©)) G, (&, )}
+{(BEQ)—b)G(E, 2)}, 1 ()dédy

and

LS @=F @)+ [ [[EQO—0)6. )

+{(@(©) —a@)G.(C, 2}
H{B@) —d()G.(&, )}, 1, ()dédy.

If & is continuous on D, and is a solution of Lu=0 (or Lu=d*du
+dura+uf=0; a=—bde+ady, f=cdady) in D,, then T,k (or t,h) is
continuous on D, and satisfies the equation Lu=0 (or Lu=0) in D,
and also T ,h=h (or t,h=h) on 0D,. Consequently we obtain

t T h)y="h (or T,(t.h)=Hh).

On the other hand, if a uniformly bounded sequence {f,} of con-
tinuous function f, in D converges to a function f defined in D uni-
formly on every compact subset of D, then for each point #z in D
(9) Tf(x)=lim, T, f.(2) (or tf(z)=lim,t,1,(2)).

In fact, setting
bn(z) =| Tnf(z)_-f(z)_ Tnfn(z)+fn(z) l!

¢.(2)=|f.(0—f@)|,

lim, a,(z)=0

and
we have

from (i) of Lemma 2 and
lim, b,(z)=0
from (ii) of Lemma 2. Thus, using lim, ¢,(2)=0 and
| Tf(2)— T, f(2) | S0a(2) +0,(2) +c,(2),
we have (9).

Now take a function u in B(a,b,¢; D) (or B(a,b,¢; D). From (8),
the sequence {T,u} (or {t,u}) is bounded by [{ || in the absolute value
and T,u (or t,u) is a solution of Lu=0 (or Lu=0). Hence by (9),
T.u (or t,u) converges uniformly to Tw (or tu) on each compact subset
of D which is a solution of Lu=0 (or Lu=0).

From (8) we have
(10) t(Tw)y=u (or T,(tu)=u).

If we apply (9) to (10) with f,=T,u, we see
H{Tu)y=u (or T(tu)=wu),
Heull=llwll (or || Tull=||=])).
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This shows that T (or t) is a one-to-one mapping of B(a,b,c; D) (or
B(a,b,¢; D)) onto B(a,b,c; D) (or B(a,b, ¢; D)) and that T=t"'. It is
also obvious that both 7 and ¢ are isometric. Thus Banach spaces
B(a, b, ¢; D) and B(a,b,c; D) are isomorphic. This completes the proof
of Theorem 1.

Assume that a part I" of 0D consists of a finite number of smooth
closed Jordan curves. In this case, we denote by B7(a,b,c; D) the
subspace of B(a,b,c; D) consisting of every function in B(a,b,c; D)
which vanishes continuously on I". With an obvious modification of
the proof of Theorem 1, we can prove the following

Theorem 1’. Banach spaces B'(a,b, c; D) and BT (a,b,c; D) are
isomorphic.

4. A compact set E of D is said to be (a,b, c)-removable if, for
any subdomain D of D containing E, any bounded solution # of Lu=0
on a component D, of D—F whose boundary contains the boundary
of D can be continued to a solution of Lu=0 on D. In this definition
we may assume without loss of generality that the boundary 09 of
D consists of a finite number of smooth closed Jordan curves. As an
application of our comparison theorem we prove

Theorem 2. Let (a,b,c) be any admissible triple. Then a compact
set of D is (a,b,c)-removable if and only if the logarithmic capacity
of E equals zero.

Proof. Let (a,b,¢) and (a,b,c¢) be any two admissible triples in
D. Assume that E is (a, b, c)-removable. Let v be an arbitrary element
in B(a,b,¢; D). We may assume without loss of generality that v
is continuous on 9D~D,. Let ¢’ be continuous on D and v'=v on 9D
and Lv'=0 in D. Putting v"'=v'—v, we see that v” is in B*®(a, b, ¢; D).
On the other hand, by the maximum principle and by Theorem 1/,
we have

B*®(q, b, ¢; D)= B*®(a, b, ¢; D)={0}.
Hence v"=0 or v'=v on ;. Thus E is (a,b,c)-removable. By the
same method, we easily see that if E is (a,b,c)-removable, then E is
(a, b, ¢)-removable.
Taking (a,b,¢)=(0,0,0) and noticing that (0, 0, 0)-removable set is

nothing but a set of logarithmic capacity zero, we can assure our
Theorem.

The sufficiency of this theorem was proved by Inoue [2]. In the
case of pairs (0,0,c), this theorem was proved by Nakai [5] and Ozawa

[67.
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