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152. The Space of Bounded Solutions and Removable Singu.
larities of the Equation zlu+au+bu+cu-0 (c< O)

By Yoshio KAT(3

Mathematical Institute, Nagoya University

(Comm. by K. KUNUGI, M.J._., Dec. 12, 1960)

1. Let D be a bounded domain in the complex z-plane. We
consider a triple (a, b, c) where a and b are twice continuously dif-
ferentiable functions and c is a non-positive, continuously differentiable
function defined in a domain containing the closure of D.) We say
that such a triple is admissible. Consider the partial differential
equation of elliptic type:
1 zlu+au+bu+cu-O,

where /-3/3x+3/3y, Ux-u/3x and u-3u/3y. Using notations of
exterior differentials, (1) can be written as follows"

Lu=d*du+du/a+ufl O,
where a-- bdx-- ady and fl- cdxdy.

We denote by B(a, b, c; D) the totality of bounded solutions of the
equation (1) in D. Here a solution of (1) is always assumed to be twice
continuously differentiable. Then B(a, b, c; D) is a Banach space with
the norm Iiu[]-sup ]u] (see FI). Take another admissible triple

(a, b, c). In this note, we shall prove that B(a, b, c; D) is isomorphic

with B(a, b, c; D)as Banach spaces. In Nakai [5, this comparison
problem was considered for triples (0, 0, c) on a Riemann surface under
some condition for c. Finally we shall characterize sets of removable
singularities for bounded solutions of (1).

2. Let {D},% be an exhaustion of D, i.e. D is a subdomain of

D whose closure D is contained in D and whose boundary 3D, consists
of a finite number of closed smooth Jordan curves and moreover
{D}% satisfies

DD+ and D- [JD.

Let G(, z) be the Green function of (1) with respect to D with pole
at . It is well known that G(, z) is the Green function of the ad-
joint equation of (1)
(1") L*u=d*du--du,o+(fl--da)u-O
with respect to D. with pole at z and, for each pair (5, z) in D, the
sequence {G(5, z)} converges non-decreasingly to G(5, z) which is a

1) Functions considered in this note are all assumed to be real-valued.
2) The author extends his hearty thanks to Mr. Nakai for his kind suggestions.
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solution of (1) in z and a solution of (1") in 5 (see [3 and 4).
Moreover G(5, z) is bounded outside a neighbourhood of z as a function
of . We shall call G(5, z) the Green function with respect to D.

Let S be a closed disk with center z in D. Then we can prove
Lemma 1. There exists a positive constant .K for each point z

in D such that

f I( -’
for all n satisfying DS, where

Proof. Fix a point z in D. Let u be a solution of (1") in D--{z}
and vanishing on 3D. For such a function u, we obtain

Integrating (2) on D--S, we have

(3) Z du*du--f (u*du--u)+1f u(---d),
Dn--S 8S Dn--S

since u vanishes on 3D. Applying (3) to G(5, z), we get the assertion
of Lemma I from the boundedness of a, b, 3a/3, 3b/3, and c in D and
from the uniform boundedness of G(5, z), 3G(5, z)/3 and 3G(5, z)/
on 3S.

Lena 2. Iff is a bounded continuous function in D, then,
for each point z in D,

Dn D

and

limn ; fG (, z)f()dd--ffGJ J -- (, z)f()dd< oo.
Dn D

(ii) If a nibml boded seqeee [f] of eontnos
in D eonveres to a fneton f defined in D niforml on ever
eompaet sbset of D, then for eae point in D

lim ff z)(f()--f())dd=O
n

and
OG, (, z)(f,()--f())dd- 0lim,

d d
Dn

Proof of (i). We prove the second identity since the first is
trivial. Fix a point z in D. By Lemma 1 and Fatou’s lemma, we
can see easily

For a eompaet set A of D which eontains S, the Sehwarz inequality
and Lemma 1 imply
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5 .l’fii
2)n--A

___<K. sup f . (Area of (D--A))
for sufficiently large n. By the same argument as above, we get, using
(4),

(6) -(, )f()dgrl K’sup f .(Area of (17--.4)).

0G 0G ( z) uniformly on eachOn the other hand
3

(’ z) converges to -.,
compact set of D as n tends to infinity. Hence we get

(7) (" ’( ;gG 3G....f()ddr]__>0 (n--> ).

From (5), (6) and (7), we cn conclude (i) of Lemma 2.
Proof of (ii). By our assumption there exists a constant M inde-

pendent of n such that If([)]<:M in D. If we apply (5) with f--f-f,
we obtain

ff 3([’z)(f([)-- f(5))dfdSI4KM’(Area of (D,--A)).
Dn--A

On A, the sequence G,/. (fn--f) converges to 0 uniformly. Thus we
get the second equality. The first identity is obvious. Therefore, we
can conclude (ii) of Lemma 2.

3. Theorem 1. For any two admissible triples (a, b, c) and (a,
b, c), Banach spaces B(a, b, c; D) and B(a, b, c; D) are isomorphic.

Proof. Let G-(, z) and G-(5, z) be Green functions with respect
to D and D corresponding to the triple (a, b, c) respectively. For a
bounded continuous function f in D, we define transformations Tf and
tf as follows:

1 ’Tf(z)= f(z)-F-2-- J J
F_(c()-c())G(, z)-F{(a()-a())

G(5, z)]-F{(b(5)-b(5))G(, z)],f(5)d$d
and

x
By (i) of Lemma 2, we see that Tf(z) < oo and tf(z) < oo for each point
z in D. We also define auxiliary transformations Tf and tf of a
bounded continuous function f defined in D as follows:
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and

Tf(z)-f(z)+ 1ff(c()--())(, z)
2

Dn

+ {(a()--a())G(, z)}e
+ {(b()--b())G(, z)}f()d$dr]

1tnf(Z)-- f(z) + ff(()--c())G,(,
Dn

+{(a()--a())Gn(, z)}e

If h is continuous on D and is a solution of Lu--O (or Lu=d*du

+duna+u:O; a---bd+ady, fl-cdxdy) in D, then Th (or th) is

continuous on D and satisfies the equation Lu--O (or Lu--O) in D
and also Th=h (or th-h) on 3D. Consequently we obtain

] Th ]l--] h [] (or th-- h ),( 8 ) t(Th)-h (or T(th)- h).
On the other hand, if a uniformly bounded sequence {fn} of con-

tinuous function f in D converges to a function f defined in D uni-
formly on every compact subset of D, then for each point z in D
9 ) Tf(z) lim TnA(Z) (or tf(z)= lim tA(z)).

In fact, setting
an(Z)--] Tf(z) (z)
bn(z) Tnf(Z)--f(z)-- +A(z)

and

we have
c(z) f(z)--f(z) ],

lim, a(z)=O
from (i) of Lemma 2 and

lim b(z)= 0
from (ii) of Lemma 2. Thus, using lim c(z)--0 and

Tf(z)-- Tfn(z)la(z)+b(z)+cn(z),
we have (9).

Now take a function u in B(a, b, c; D) (or B(a, b, c; D)). From (8),
the sequence {Tu} (or {tu]) is bounded by l] u ll in the absolute value
and Tu (or tu) is a solution of Lu--O (or Lu--0). Hence by (9),
Tu (or tu) converges uniformly to Tu (or tu) on each compact subset
of D which is a solution of Lu-O (or Lu=0).

From (8) we have
(10) t(Tu)=u (or T(tu)=u).
If we apply (9) to (10) with f= Tu, we see

t( Tu) u (or T(tu) u),
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This shows that T (or t) is a one-to-one mapping of B(a, b, c; D) (or
B(a,b,c; D)) onto B(a,b,c; D) (or B(a,b, c; D)) and that T=t-. It is
also obvious that both T and t are isometric. Thus Banach spaces

B(a, b, c; D) and B(a, b, c; D) are isomorphic. This completes the proof
of Theorem 1.

Assume that a part F of 3D consists of a finite number of smooth
closed Jordan curves. In this case, we denote by Br(a,b,c; D) the
subspace of B(a,b,c; D) consisting of every function in B(a,b,c; D)
which vanishes continuously on F. With an obvious modification of
the proof of Theorem 1, we can prove the following

Theorem 1. Banach spaces B(a, b, c; D) and Br(a, b, c; D) are
isomorphic.

4. A compact set E of D is said to be (a,b, c)-removable if, for
any subdomain 3 of D containing E, any bounded solution u of Lu--O
on a component of --E whose boundary contains the boundary
of can be continued to a solution of Lu--O on ’. In this definition
we may assume without loss of generality that the boundary 3 of

consists of a finite number of smooth closed Jordan curves. As an
application of our comparison theorem we prove

Theorem 2. Let (a, b, c) be any admissible triple. Then a compact
set of D is (a, b, c)-removable if and only if the logarithmic capacity
of E equals zero.

Proof. Let (a, b, c) and (a, b, c) be any two admissible triples in
D. Assume that E is (a, b, c)-removable. Let v be an arbitrary element
in B(a,b,c; ). We may assume without loss of generality that v

is continuous on 5. Let v’ be continuous on and v’--v on 3
and Lv’--O in . Putting v"--v’--v, we see that v" is in BO(a, b, c; ).
On the other hand, by the maximum principle and by Theorem 1’,
we have

B(a, b, c; .)--B(a, b, c; )={0}.
Hence v"--0 or v’=v on . Thus E is (a, b,c)-removable. By the
same method, we easily see that if E is (a, b, c)-removable, then E is
(a, b, c)-removable.

Taking (a, b, c)-(0, 0, 0) and noticing that (0, 0, 0)-removable set is
nothing but a set of logarithmic capacity zero, we can assure our
Theorem.

The sufficiency of this theorem was proved by Inoue [2. In the
case of pairs (0, 0, c), this theorem was proved by Nakai 5_ and 0zawa
[6].
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