24. On Distribution Solution of Partial Differential Equations of Evolution. II

By Takashi Kasuga
Department of Mathematics, University of Osaka
(Comm. by K. Kunugi, m.J.A., Feb. 13, 1961)

We shall continue the study of the properties of the classes $\mathbb{C}_{t} \cdot D^{\prime}$ in section 3 and prove the main theorem 6 in section 4.
3. THEOREM 3. Let $\left(G_{n}\right)_{0}$ be a subdomain of G_{n} and $a \leqq a_{0}<b_{0} \leqq b$ and let $\widetilde{T} \in \mathbb{G}_{\mathfrak{c}}^{\circ} \mathbb{D}^{\prime}\left(G_{n+1}\right)(+\infty \geqq s>-\infty)$. Then the restriction $(\widetilde{T})_{0}$ of \widetilde{T} on $\left(G_{n+1}\right)_{0}\left(=\left(G_{n}\right)_{0} \times\left(a_{0}, b_{0}\right)\right)$ belongs to $\mathbb{G}_{t}^{s} \mathfrak{D}^{\prime}\left[\left(G_{n+1}\right)_{0}\right]$.

Proof. The proof follows immediately from the definitions of the classes $\mathscr{C}_{t}^{\circ} \mathbb{D}^{\prime}$, so we omit the proof of Theorem 3.

THEOREM 4. Let $\left(G_{n}\right)_{0}$ be a domain in R^{n} such that $\overline{\left(G_{n}\right)_{0}} \subseteq G_{n}$ and $\overline{\left(G_{n}\right)_{0}}$ is compact. Also let $-\infty \leqq a<a_{0}<b_{0}<b \leqq+\infty$. If $\widetilde{T} \in \mathfrak{D}^{\prime}$ $\left(G_{n+1}\right)$, then there is an integer s such that the restriction $(\widetilde{T})_{0}$ of \widetilde{T} on $\left(G_{n+1}\right)_{0}\left(=\left(G_{n}\right)_{0} \times\left(a_{0}, b_{0}\right)\right)$ belongs to $\mathbb{C}_{t}^{8} \mathbb{D}^{\prime}\left[\left(G_{n+1}\right)_{0}\right]$.

Proof. By the local structure theorem of distributions, ${ }^{1)}$ we can find a complex-valued function $F_{0} \in C^{0}\left[\left(G_{n+1}\right)_{0}\right]$ such that $(\widetilde{T})_{0}=D_{t}^{s} D_{x}^{\alpha} F_{0}$ s^{\prime} an integer $\geqq 0$. By Lemma 2, F_{0} regarded as a distribution belongs to $\mathbb{E}_{t}^{\circ} \mathbb{D}^{\prime}\left[\left(G_{n+1}\right)_{0}\right]$. Hence by (2.6) in Theorem 2 and by Theorem 1, we have $(\widetilde{T})_{0} \in \mathbb{E}_{i}^{*} D^{\prime}\left[\left(G_{n+1}\right)_{0}\right] \quad s=-s^{\prime}$. Q.E.D.

Theorem 5. Let $\widetilde{T} \in \mathfrak{D}^{\prime}\left(G_{n+1}\right)$. Assume that each point $\left(x_{0}, t_{0}\right)$ of G_{n+1} has a neighbourhood $\left(G_{n+1}\right)_{0}$ of the form $\left(G_{n}\right)_{0} \times\left(a_{0}, b_{0}\right)$ where $-\infty \leqq a \leqq a_{0}<b_{0} \leqq b \leqq+\infty$ and $\left(G_{n}\right)_{0}$ is c, subdomain of G_{n} such that the restriction $(\tilde{T})_{0}$ of \tilde{T} on $\left(G_{n+1}\right)_{0}$ belongs to $\mathbb{C}_{s}^{s} \mathbb{D}^{\prime}\left[\left(G_{n+1}\right)_{0}\right]$ where s $(-\infty<s \leqq+\infty)$ is the same for all points $\left(x_{0}, t_{0}\right) \in G_{n+1}$. Then $\widetilde{T} \in \mathbb{G}_{i}^{s} \mathbb{D}^{\prime}$ $\left(G_{n+1}\right)$.

Proof. For $+\infty \geqq s \geqq 0$, the proof of Theorem 5 is immediate if a suitable partition of the unity ${ }^{2)}$ on G_{n+1}, the univalency of the mapping M^{-1} and the compactness of the carriers of the test functions φ for the distribution \widetilde{T} are used. Hence we omit the proof for the case.

For $-\infty<s<0$, we proceed as follows. For $\widetilde{T} \in \mathfrak{D}^{\prime}\left(G_{n+1}\right)$, there exists always a distribution $\widetilde{T}_{8} \in \mathfrak{D}^{\prime}\left(G_{n+1}\right)$ such that $\widetilde{T}=D_{t}^{-8} \widetilde{T}_{3}{ }^{3}{ }^{3)}$ Then

[^0]the restriction $\left(\widetilde{T}_{3}\right)_{0}$ of \widetilde{T}_{3} on $\left(G_{n+1}\right)_{0}$ belongs to $\mathbb{G}_{9}^{0} \mathbb{D}^{\prime}\left[\left(G_{n+1}\right)_{0}\right]$ by the premiss of Theorem 5 and by Theorem 1. Hence $\widetilde{T}_{3} \in G_{q}^{90} \mathscr{D}^{\prime}\left(G_{n+1}\right)$ since for $s=0$ Theorem 5 is already proved. Therefore by Theorem 1 , we get $\widetilde{T}=D_{t}^{-} \widetilde{T}_{3} \in \mathbb{C}_{t} \mathfrak{D}^{\prime}\left(G_{n+1}\right)$.
Q.E.D.
4. Let $a_{i, j, \alpha}(x, t) \in C^{\infty}\left(G_{n+1}\right), \quad \widetilde{B}_{i}=\mathfrak{M}\left[\left(B_{i}\right)\right] \in \mathbb{S}_{\imath}^{0} \mathcal{D}^{\prime}\left(G_{n+1}\right)$ and $\widetilde{U}_{i}=\mathfrak{M}$ $\left[\left(U_{i}\right)_{t}\right] \in \mathbb{G}_{t}^{1} \mathscr{D}^{\prime}\left(G_{n+1}\right)$ for $i, j=1, \cdots, n$ and $|\alpha| \leqq l^{*}$ where l is anonnegative integer. Then by Lemmas 3, 4 and 6 ,
\[

$$
\begin{gather*}
D_{i} \widetilde{U}_{i}=\sum_{|\alpha| \leq i} \sum_{j=1}^{n} a_{i, j, \alpha}(x, t) D_{x}^{\alpha} \widetilde{U}_{j}+\widetilde{B}_{i} \tag{4.1}\\
i=1, \cdots, n
\end{gather*}
$$
\]

on G_{n+1}, if and only if

$$
\begin{gathered}
d\left(U_{i}\right)_{t} / d t=\sum_{|\alpha| \leq 2} \sum_{j=1}^{n} a_{i, j, \alpha}(x, t) D_{x}^{\alpha}\left(U_{j}\right)_{t}+\left(B_{i}\right)_{t}, 1, \cdots, n
\end{gathered}
$$

on (a, b).
Also let $a_{i, j, \alpha}(x, t) \in C^{\infty}\left(G_{n+1}\right), \quad \widetilde{B}_{i} \in \mathfrak{D}^{\prime}\left(G_{n+1}\right)$ and $\widetilde{U}_{i} \in \mathbb{G}_{i} \mathbb{D}^{\prime}\left(G_{n+1}\right)$ for $i, j=1, \cdots, n$ and $|\alpha| \leqq l^{4}$ where s is an integer or $+\infty(-\infty<s \leqq+\infty)$ and l is a non-negative integer. Then if (4.1) is satisfied on G_{n+1}, then $\widetilde{B}_{i} \in \mathbb{E}_{i}^{-1} \mathfrak{D}^{\prime}\left(G_{n+1}\right) \quad i=1, \cdots, n$ by Theorems 1,2 and Lemma 9.

We prove a converse of the later statement in Theorem 6. The answer for the problem stated in the introduction is given by the case $s=1$ of Theorem 6 .

THEOREM 6. Let $a_{i, j, \alpha}(x, t) \in C^{\infty}\left(G_{n+1}\right), \quad \widetilde{B}_{i} \in \mathbb{E}_{i}^{s-1} \mathfrak{D}^{\prime}\left(G_{n+1}\right)$ and $\widetilde{U}_{i} \in \mathfrak{D}^{\prime}$ $\left(G_{n+1}\right)$ for $i, j=1, \cdots, n$ and $|\alpha| \leqq l^{4}$ where s is an integer or $+\infty$ $(-\infty<s \leqq+\infty), l$ is a non-negative integer and G_{n+1} is a domain in (x, t)-space of the form $G_{n} \times(a, b)$. If \widetilde{U}_{i} satisfy on G_{n+1} the system of partial differential equations of evolution

$$
\begin{array}{r}
D_{t} \widetilde{U}_{i}=\sum_{|\alpha| \leq \Delta} \sum_{j=1}^{n} a_{i, j, \alpha}(x, t) D_{x}^{\alpha} \widetilde{U}_{j}+\widetilde{B}_{i} \tag{4.1}\\
i=1, \cdots, n,
\end{array}
$$

then $\widetilde{U}_{i} \in \mathbb{C}_{i} \mathbb{D}^{\prime}\left(G_{n+1}\right) \quad i=1, \cdots, n$.
Proof. Let (x_{0}, t_{0}) be any point of G_{n+1}. We take a neighbourhood $\left(G_{n+1}\right)_{0}$ of the form $\left(G_{n}\right)_{0} \times\left(a_{0}, b_{0}\right)$ of (x_{0}, t_{0}) where $-\infty \leqq a<a_{0}<b_{0}$ $<b \leqq+\infty, \overline{\left(G_{n}\right)_{0}} \subseteq G_{n}$ and $\overline{\left(G_{n}\right)_{0}}$ is compact. We denote the restrictions of \widetilde{U}_{i} and of \widetilde{B}_{i} on $\left(G_{n+1}\right)_{0}$ by $\left(\widetilde{U}_{i}\right)_{0}$ and $\left(\widetilde{B}_{i}\right)_{0}$ respectively. By Theorem 5, for the proof of Theorem 6 it is sufficient to prove that $\left(\widetilde{U}_{i}\right)_{0} \in \mathbb{G}_{t} \mathbb{D}^{\prime}\left[\left(G_{n+1}\right)_{0}\right]$ for every point $\left(x_{0}, t_{0}\right) \in G_{n+1}$.

Assume the contrary, that is, assume that at least one of $\left(\widetilde{U}_{i}\right)_{0}$ does not belong to $\mathbb{C}_{t} \mathfrak{D}^{\prime}\left[\left(G_{n+1}\right)_{0}\right]$ for a point $\left(x_{0}, t_{0}\right) \in G_{n+1}$. Then by Theorem 4, there is the greatest s_{0} of integers s such that all ($\left.\tilde{U}_{i}\right)_{0}$ belong to $\mathbb{G}_{9}^{\prime \prime} \mathbb{D}^{\prime}\left[\left(G_{n+1}\right)_{0}\right]$, and $s>s_{0}$. Therefore on $\left(G_{n+1}\right)_{0}$, the right

[^1]sides of (4.1) belong to $\mathbb{6}_{i}^{s} \mathfrak{D}\left[\left(G_{n+1}\right)_{0}\right]$, since $\left(\widetilde{B}_{i}\right)_{0} \in \mathfrak{G}_{i}^{s-1} \mathfrak{D}^{\prime}\left[\left(G_{n+1}\right)_{0}\right] \subseteq \bigoplus_{i}^{s} \circ \mathfrak{D}^{\prime}$ $\left[\left(G_{n+1}\right)_{0}\right]$ by Theorem 3 and Lemma 9 and also other terms in the right sides of (4.1) belong to $\mathfrak{G}_{6}^{5} D^{\prime}\left[\left(G_{n+1}\right)_{0}\right]$ on $\left(G_{n+1}\right)_{0}$ by Theorem 2. Hence the left sides of (4.1) on $\left(G_{n+1}\right)_{0}, D_{l}\left(\widetilde{U}_{i}\right)_{0} \in \mathscr{C}_{t}^{*} \circ \mathbb{D}^{\prime}\left[\left(G_{n+1}\right)_{0}\right] i=1, \cdots, n$ so that by Theorem $1,\left(\widetilde{U}_{i}\right)_{0} \in \mathfrak{G}_{t}^{s_{0}+1} \mathfrak{D}^{\prime}\left[\left(G_{n+1}\right)_{0}\right] i=1, \cdots, n$. But this contradicts the definition of s_{0}. Q.E.D.

References

[1] L. Schwartz: Les équations d'évolution liées au produit de composition, Ann. Inst. Fourier, II, 19-49 (1950).
[2] L. Schwartz: Théorie des Distributions, I, Hermann, Paris (1950).
[3] L. Schwartz: Théorie des Distributions, II, Hermann, Paris (1950).
[4] C. Chevalley: Theory of Distributions, Lecture notes at Columbia University (1950-1951).

[^0]: 1) Cf. L. Schwartz [2], p. 83.
 2) Cf. L. Schwartz [2], p. 23.
 3) Cf. L. Schwartz [2], p. 55. The same remark as in 7) applies here also.
[^1]: 4) $\alpha_{k}(k=1, \cdots, n)$ non-negative integers $\alpha=\left(\alpha_{1}, \cdots, \alpha_{n}\right)$

 $$
 |\alpha|=\sum_{k=1}^{n_{n}} \alpha_{k} \quad D_{x}^{\alpha}=D_{x_{1}}^{\alpha_{1}} \cdots D_{x_{n}}^{\alpha_{n}} .
 $$

