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1. Introduction. When the solutions u(z, t) of a system of linear
partial differential equations of evolution
(1.1) D,u:-],..- a (x, t)Du+b(x, t) i--1,-.- n.=1 i, .],

(a(k--l,..., n) non-negative integers a--(a,--., a) a ]:-=a x:
(x,. x) D’= D:. D D,, D,: the operators of partial differentia-
tion with respect to x and to t, and l: a non-negative integer)
are discussed, u(x, t) are sometimes" considered as continuously dif-
ferentiable functions of t whose values are distributions in (x)-space in
the sense of L. Schwartz. But coordinate transformations mixing the
space coordinates z and the time coordinate t are important for some
problems. For such problems, solutions in different coordinate systems
are compared most naturally by considering them as distributions in
(z, t)-space in the sense of L. Schwartz. Not only for such reasons
but also by itself, it is of some interest to ask: when can a distri-
bution solution u (i:1,-.-, n) in (x, t)-space of a system of equations
of evolution (1.1) where a,..(x, t) are infinitely differentiable functions
of (x, t) and b(x, t) are distributions in (x, 0-space be considered as a
set of continuously differentiable functions of t whose values are distri-
butions in (z)-space?

The main theorem 6 in section 4 of this note shows that this is
the case, if and only if in (1.1) b(, t) are distributions in (x, t)-space
which can be considered as continuous functions of whose values are
distributions in (x)-space.2) Theorem 6 contains also more precise
results. If a.,.(x,t) are infinitely differentiable, all distributions
u(x, t) in (x, t)-space constituting a solution of (1.1) belong to a class
+’ generally by one step more regular with respect to t than a
class ’ (+oo_s --o) (but +’:’, if s: +oo) to which all
distributions b,(x, t) in (, t)-space in the right sides of (1.1) belong. Cf.
Definitions 3 and 5. Also every distribution in (z, t)-space belongs
locally to a class g’ (+ cos> o) by Theorem 4.

As preparations to section 4, we shall classify distributions in
(, t)-space according to their regularity with respect to t and prove
related theorems in sections 2 and 3.

1) For example, L. Schwart [1].
2) In section 4, we shall give a precise formulation of the above statement&
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2.8) We begin with some notations.
(G): the linear space of infinitely differentiable complex-valued

functions with compact carriers in a domain G. Its topology is that
given in L. Schwartz [2].

)’(G): the linear space of distributions on G, that is, the dual
space of (G). Its topology is that given in L. Schwartz [2.

C(G): the class of m(om:>0) times continuously differentiable
complex-valued functions on G.

In thi note, G is always a domain in x-space (--R) and (a, b)
is always an open interval in t-space such that oa<b+ o. We
write also the domain Gn (a, b) in (x, t)-space as Gn/l.

DEFINITION 1. We denote by ’[(a,b), G] (+omO) the linea
space of m times continuously differentiable" functions of on (a, b)
with values in ’(G).’

We denote the derivative" e,[(a, b), G] of a function T e,[(a, b),
G] of by dTJd$ and the distribution derivatives of a distribution

Te)’(G/I) by D T, D,T. Also we denote the distribution derivatives
of a distribution Te’(G) by DT. Also if a(k--1,..., n) are non-
negative integers, D--D’,- D a=(a,,- ., a) and a]==a.

If T,[(a,b), G], then T defines a distribution Te)’(G/t)in
(, t)-space by

(2.1) () T,[(x,

where (, $) (G/,).
DEFINITION 2. We denote by the linear mapping of ,[(a,b),

into )’(G/,) defined by (2.1).
DEFINITION 3. We denote by .,/1) (+ oomO) the image

of [(a, b), G] by . ’)’(G+) (+ oo__mO)_ is a linear subspace
of ’(G/1).

In section 2, we abbreviate 7[(a, b), G], , (G/,) (+ o :>m:>0)
as 7’, ’’ respectively since we are concerned with only one domain
G in (x)-space and with only one interval (a, b) in -space and with
only one domain G/-G (a, b) in (x, )-space in this section.

3) In section 2, we shall state some definitions and lemmas. The proofs of these
lemmas and of the consistency of these definitions follow easily from tle fundamental
properties of distributions as given in L. Schwartz [2, 3] so that we shall almost always
omit the proofs.

4) We define the derivative dT/dt of a function T of $ with value in (G) by
(Tt+t-T)/t--dT/dt(,t---,O) in the strong or the weak topology of ’(G). Here it
becomes the same thing if we consider the continuity and the differentiability of the
function T in the strong or the weak topology of ’(G). Cf. L. Schwartz [2], p. 75.

5) We denote the class of infinitely ditferentiable functions of $ on (a, b) with
values in ’(G) by +’[(a, b), G] since we shall define later classes ’(Gn+l)also for
negative integer s.
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LEMMA 1. The mapping is on to one. Hence if
(+ o =>m0), then -’(T)e.

By Lemma 1, we have
(2.2) N ’=t’.

+mO

LM 2. Le F b a complex-valued function C(G+). Then
F regarded as dis$ri$ion e’(G+) belongs to ’.
LEM 3. If T e and so :(T) e’, hen DT

’ and D=(DT).
LEM 4. If T and so :(T)e’, hen D,=(dT]d$).
LEM 5. If T e, hen d(D$Tz)]d exists and d(D$T)]d

D$(dT/dO. Hence Lemma 3, D$T

LEMM 6. If T and so =(T)e’ and if
then a(, $)T, a(,)’ and a(x, ):[a(x,

We denote the Riemann integral’ on an interval [a’, b’] (a< a’ <b’
<b) of a function Te by

Also we define

T,d---

Then if a< c, t< b,

T dt if a’ > b’ and T dt O.

T dt , and - T dt-- T.

DEFINITION 4. If Tz eo and so T--(T) ofl), and if a< c< b,
we define the operation I,, on T

Then by Lemma 4, we have

LEMMA 7. If ’, then I,() ’ and DI,,(): .
LEMA 8. If ’(G,.) and D,=O, then is of the form

T()= T((, t)) gt

where (,t)e(G+) and T is a ditrition ’(G).’ Hence

6) We define the Riemann integral on an interval [a’, b’] (a<a’<b’< b) of a function

Tt by the limit of the Riemann sum when the maximum length of the subintervals
belonging to the subdivision of [a’, b’] corresponding to the Riemann sum tends to zero.
The limit exists in the strong topology of Y(Gn). Cf. C. Chevalley [4], p. 36.

7) Lemma 8 is proved in L. Schwartz [2], p. 113 for the case Gn(a,b)=R"R.
But the generalization to the present case is immediate.
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Now we define the classes (G/) of distributions for negative
integers m as follows.

DEFINITION 5. We denote by ’(G/) (m positive integer)he
linear space of all distributions Te’(G,) of She form T--DrT,
where Te’(G+a).

.’ for 0>s> oo asIn section 2, we abbreviate , (G/) as
well as for +

LEMMA 9. if -t- oo s’ s> oo, then

(2.3) )’ ,)’.
PRO01. For + os’s:>0, (2.3) is obvious. Hence it is sufficient

to prove (2.3) for the case 0

>--o, then we have a distribution e, such that =D;.
Then :n-rn-r-’)] -o -o--D, [I., ()] and e ,D’
by Lemma 7 and (2.3) for the case + oo ’

_
0. Q.E.D.

THEOREM 1. Let Te )’(G/). Then Te’(+ oo _s 0), if
and only if DTe-)’.

PROOF. If Tg)’, then it follows immediately from the defini-

tions of the classes )’ and Lemma 4 that D,e-’. Hence we
shall prove only the converse. Let D,-)’. If s--l<0, there is

a distribution 2, such that D,=D}-2. Now we define a

distribution I,(D, T) )’(G/) for the general case oo <:s+ 0 as
follows:

IIo,,(DT) if s--l0I,(D, T)-- tDT"2 if s-- 1< 0.
Then by Lemma 7 and Definition 5, we have always

(2.4)
(2.5) D[I(D,’)]=D,’.
From (2.5) we have D,[I,(D,)--]--0 so that by Lemmas 8 and 9, we
get I(D,T)-- Te,+) ,. From this and (2.4) we have TegI’.
Q.E.D.

THEORE 2. If Te$)’ (+oo=>s>--oo) and a(,)eC(G/), $hen

(2.6)
(2.7) a(z, t) e I)’.

PROOF. The proof of (2.6) follows immediately from the defini-
tions of the classes {fl) and Lemmas 3 and 5. Hence we prove only (2.7)
by the induction on s. For s=0, (2.7) is already established by Lemma 6.

We begin with the case + oo >s 0. Let (2.7) be already es-
tablished for an integer s_>__ 0 and assume that |+x’. Then by the



No. 2] On Distribution Solution of Partial Differential Equations of Evolution. I 89

assumption of the induction, D,[a(z, t) T] (Oa(x, t)/bt)T-{-a(, t)DT
e)’, since ,D)’ by Lemma 9 and Theorem 1. Therefore by

Theorem 1, we have a(z, t)T(|+’. Thus the induction for the case
+ oo >s 0 is completed. (2.7) for the case s-- + oo follows from (2.7)
for the case + co >s 0 and from (2.2).

Now we proceed to the case 0 s>-- oo. Let (2.7) be already

established for an integer s0 and assume that e-l),. Then

there is a distribution ,0, such that =D-x. Hence by Theorem

1 and Lemma 9, a(,t)----D[a(,t)D- --(a(,t)/t)De-) since

a(z, t)DT’T, (a(z, t)/t)DT’Te)’ by the assumption of the induction.
Thus the induction for the case 0s>--oo is completed. Q.E.D.
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