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17. On Tanelli’s Theorem concerning Curve Length
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(Comm. by Z. StrffNt, M.J.A., Feb. 13, 1961)

1. Introduction. Let us consider a plane parametric curve (not
necessarily continuous) given by the equation (t)----z(t), y(t), where
the variable t ranges over the real line R. We assume that this curve
is locally rectifiable, i.e. that its arc length s(I) is finite for any closed
interval I in R. We are interested in the problem of expressing the
length by means of the derivatives z’(t) and y(t). Of course this is
easily solved when, in particular, the curve is continuously differenti-
able, since we have then, for every I, the well-known formula

( 1 ) s(I)--fx’(t)H-y’(t)
I

In the general case, however, the same problem shows itself far
more complicated and was not solved until Tonelli proved the following
decisive result: we have the rdation s’(t)2=x’(t)H-y’(t) for almost
every point t of R and the integral on the right of (1)does not
exceed s(I) for any closed interval I, the equality (1) holding if and
only if both the functions x(t) and y(t) are absolutely continuous on
I (see Saks [3J, p. 123).

Now Tonelli’s theorem, though without doubt fautless in its own
way, cannot nevertheless be regarded, so far as it goes, as a complete
and final solution of the problem under consideration, in the following
one point: it gives us no insight, even when the curve is continuous,
into the nature of the difference between the arc length s(I) and the
square-root integral. It is the main object of the present note to
remedy this defect by obtaining, at least for continuous curves, a
supplement to Tonelli’s theorem which resembles in enunciation the
decomposition formula of de la Valle Poussin (vide Saks, p. 127).

2. Heuristic considerations. Retaining the notation of the intro-
duction, let us write E for the Borel set of the points $ for which
’($)=+/- oo, and let E be defined correspondingly. According to de
la Valle Poussin’s theorem (lot. cir.) we have, for every bounded
Borel set A at whose points t the curve (t) is continuous,

= (ABe)+f
and a similar relation for y* (the set E being replaced by E, needless
to say), where x* and y* represent the outer measures of Carathiodory
induced by x($) and y(t) respectively. This at once suggests us the
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conjecture that, if we write E--EE for brevity, then

s*(M)-s*(ME)-k dt

for any bounded Borel set M at whose points (t) is continuous. This
decomposition formula will constitute a upplement to Tonelli’s theorem
since we have s*(M)-s(M) when M is in particular a closed interval.
We shall prove this conjecture in 4 in a somewhat generalized form.

With the view of application to differential geometry of para-
metric curves we shall also consider the ease in which the curve
is only unilaterally continuous at the points of the set M appearing
above. But then the notion of derivative will be subjected to a slight
corresponding modification in order to keep up the validity of the
decomposition formula (see 5).

3. Relative derivation of additive interval-functions. We shall
heneeforth follow our reeent paper 2J in terminology and notation.
Thus will always represent a finite nonnegative set-function, defined
and additive on the class of all bounded Borel sets in R. We shall
say that / is contiuous at a point t of R, if p([t}):0. When this
is the case for every point t, p will simply be termed continuous.
Needless to say, there is at most a countable infinity of points of
discontinuity for p. Further let F(I) denote hereafter a finite ad-
ditive interval-function, defined in any manner for all closed intervals
I in R and of bounded variation over each L

In Saks [3J the derivation of additive interval-functions is reduced
to that of additive set-functions by means of the relation

which holds for nonnegative F at every point of continuity of F.
However, a similar reduction is no more available if we want to deal
with relative derivation of additive interval-functions with respect
to the function/, since we do not assume the continuity of /. We
shall get over this situation by making the reduction on a different
principle, basing our argument on the following lemma.

LEMMA. At -almos every point at which one at least of the
functions / and F is continuous, both the functions F and F* are
p-derivable and their coincide.

RARK. The proof below will be modelled after the proof of
Lebesgue’s theorem on p. 115 of 8aks; but the details will be con-
siderably different.

PROOF. Let X denote the set of the points of continuity of/
at which F is discontinuous. This set is then clearly countable and
consequently we find at once that (X)--O. Thus it is sufficient to
restrict ourselves to points of continuity of F. Without loss of
generality we may further assume F nonnegative. We shall write



No. 2] On Tonelli’s Theorem concerning Curve Length 65

for F* for simplicity.
Let A denote the Borel set of the points t which fulfil the in-

equality (p)O(t)>(p)F(t) and at which the function F is continuous.
We want to show that (A) vanishes. For this purpose suppose, if
possible, that (A)0. We then find easily, as in Saks, that there
exist a pair of positive numbers p, q and a bounded Borel set BCA
of positive measure (p) in such a manner that, for all points t of B,
we have (/z)0(t) >p>q>(lu)F_(t).

Let $ be any positive number and G a bounded open set which
contains B and satisfies both
( 1 ) p(G-B)<q- ’e and 0(G--B)<.
Consider the family of all closed intervals IG for which F(I)qlu(I).
This family covers the set B in the Vitali sense, and therefore, in
accordance with the covering theorem established in our paper [1],
contains a disjoint (finite or infinite) sequence of intervals I, L,..-
whose join Q contains B almost entirely (p). Now, if J denotes the
interior of an arbitrary closed interval J, then

O(J) O(J) -t-O(J--J) F(J) -t-(J-- B),
since O(J)F(J) by a known theorem (Saks, p. 68, above) and since
F, and hence 0 also, is continuous at every point of B. We thus
find in view of (1) that

O(Q) , 0(I)q p(I)+, 0(I-B) qp(G)-t- qp(B)+2.

On the other hand, (p)O(t)p at each point t of B. Recalling the
relation p(B--Q)-O we therefore get, by the lemma of [2 4,

O(Q)O(BQ)pp(BQ)-p/(B).
This, in combination with what we have already proved, leads at once
to p(B)<qp(B)-2e, which is a contradiction since p>q, /(B) > 0,
and e is arbitrary. Consequently we must have (A)--O, or in other
words, the inequality (/)O(t)(p)_F(t)holds at /7-almost every point
t at which F is continuous.

Now, since F is nonnegative, F(J)O(J)for any closed interval

J and so (/)O(t)(/OF(t)(/)F_(t) for every t. It follows that the

p-derivative (p)F’(t) exists and coincides with (p)O(t) at fi-almost every
point t of continuity of F. The function 0 being p-derivable almost
everywhere (fi) as shown in [2J 4, the assertion follows.

THEOREM. If F is nonnegative and X is a bounded Borel set
at each of whose points one or both of the functions and F are
continuous, then we have
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the sign of equality holding if, and only if, the outer measure F*
is absolutely continuous (p) on X.

PROOF. In view of the above lemma this is-an immediate con-
sequence of Lebesgue’s decomposition theorem of [2 7.

THEOREM. Let us denote by W the absolute variation of the
interval-function F and by C the set of the points of continuity of
F. Then, for the set A of the points of C at which both the p-
derivatives of F and of F* exist and coincide, we have

(C--A)-- W*(C--A)--O.
PROOF. Let 0 be short for F* as above. Writing v(X)-p(X)

-W*(X) for bounded Borel sets X, so that v is a nonnegative ad-
ditive set-function, we see easily that (Y)--(Y)- W*(Y) for any
set Y (el. the final remark of 2 2 which concerns the construction
of from p). Let P be the set of the points of Cat which the
three functions , F, and 0 are all v-derivable and moreover the -derivatives o F and of 0 coincide. Then (C--P) vanishes on account
of the above lemma and Lebesgue’s theorem of 2J 4. Further let
Q be the set of the points t of P at each of which (v)p’(t) arid (v)F’(t)
do not both vanish. Since then

at all points t of Q, we have QA, and this conjointly with (C--P)
--0 obtained above implies that

(C--A);(C-Q);(C--P)-;(P-Q) ;(P-Q).
Thus the assertion will be established if we show that fi(P-Q)-O
and W*(P-Q)-0.

Now both the r-derivatives (r)p’(t) and (r)O’(t)vanish everywhere
in P-Q. Consequently it follows from Corollary 1 of 2J 7 that
p(Z)=O----O(Z), where and subsequently Z represents an arbitrary
bounded Borel set contained in P-Q. From the former of these
equalities we deduce at once that (P-Q)-O. On the other hand,
the set Z being arbitrary, the latter equality plainly implies that, if
F denotes the absolute variation of the restriction of the set-function
0 to bounded Borel sets, then F(Z)=O for every Z. But it is known
that F(X): W*(X) for bounded Borel sets XC (see Saks, p. 99).
Since every Z lies in C, it follows that W*(P--Q)--O, which together
with (P-Q)=O completes the proof, as already observed.

4. Supplement to ToneHi’s theorem. Let us state firstly a
version of Tonelli’s theorem which can be proved in almost the same
way as in Saks, pp. 124-125. The letter . will retain its meaning
explained in the foregoing section.

TONELLI’S THEOREM. Given a locally rectifiable curve p(t)--(x(t),
y(t)) let s(I) denote its arc length over any closed interval I and let
M be the set of the points at each of which one or both of the rune-
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tions / and (t) are continuous. Then
( 1 ) E()s’(t)-I"= I-(/)x’(t)-! s-!
for -almost every point t of the set M and

( 2 ) s*(X)_f4[()x’(t)] [(/)y’(t)]’- d/(t)

for each bounded Borel set XM. The equality sign holds in (2)
if, and only if, both the outer measures P* and Q* are absolutely
continuous (l) on the set X, where P and Q stand for the absolute
variations of x(t) and y(t) respectively.

We shall now complete this theorem by establishing the following
supplement to it, which constitutes the main result of this note:

SUPPLEMENT. Let C be the set of the points at which the curve
(t) of the above theorem is continuous, and E the Borel set of the
points t of C at each of which one or both of the/-derivatives (/z)x’(t)
and (/)y’(t) exist and are infinite. Then, br every bounded Borel
set XC,

( 3 ) s*(X)--s*(XE)-f4[(/Ox’(t)] - [(/)y’(t)J d/(t).

PROOF. Let us denote by K the Borel set of the points t of C
at which (/)s’(t) is infinite, and by N the Borel set of the points of
K at which both the -derivatives of x and of x* exist and coincide.
Then K clearly contains E, and the function P of the above theorem
fulfils P*(K--N)---O on account of the last theorem of 3. Thus
( 4 ) P*(K--E)P*(K--N)-P*(N--E)--P*(N--E).
Now, since C plainly coincides with the set of the points of continuity
of s(t), the lemma of 3 implies that /7(K)--0, from which we derive
(N--E)-O. On the other hand, the/-derivative of x* must be finite
at any point t of N--E since it is equal to (/)x’(t), which cannot be
infinite since t does not belong to E. Consequently, appealing succes-
sively to the formula (2) of [2] 8 and the theorem on p. 99 of Saks,
we find at once that P*(Y)--O for all bounded Borel sets YCN--E
and that therefore P*(N--E)--O. This combined with (4) yields
P*(K--E)--O. By symmetry Q*(K--E) must also vanish, and we
get finally s*(K--E)--O since evidently

s*(K--E)P*(K--E)-Q*(K--E).
This being so, consider the Borel set K0 of the points t of C at

which the /-derivative of s* becomes -o. Since s(I)s*(I) for
every closed interval I, the set Ko contains K; and it follows from
the last theorem of the preceding section that s*(Ko--K)--O. This,
in combination with s*(K--E)--O obtained already, gives s*(K--E)=O,
where we observe that EKo.

With this in mind we deduce from the decomposition formula (1)
of [2] 8 that, for every bounded Borel set XC,
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ds*

But the /x-derivative of s* is equal to that of at /7-almost every
point of C, in conformity with the lemma of 3. The formula (3)
follows now at once on account of the relation (1).

5. Relative interior-derivative of an additive interval-function.
Consider a function T which is defined at least for all closed intervals
in R and assumes finite values for such intervals. By the interior
p-deite of T at a point t we shall understand the limit, supposed
existent, of the ratio T(I)/p(I) as II tends to zero, where I stands
for any closed interval whose interior contains the point t. We shall
write (p)Tt(t) for this quantity. As is easily seen, the set of the
points at which ()T(t) exists is a Borel set and (p)Tt(t) is B-measurable
on this set (cf. Saks, p. 113, above). Plainly (p)Tt(t) exists and equals
(u)T(t) wherever the latter exists, but the converse is of course false.
The function T will be termed teio-derable (p) at a point t when
(p)T(t) exists and is finite.

Let F be as in 3 an additive interval-function, of bounded
variation over closed intervals. Then F is inerior-derivabl (p) al-
mos$ everywhere (fi). Indeed we easily find, for each point at which
not both F*({$}) and p({$}) vanish, the relation

(p)F’()=F*({t})/p([t}),
and the assertion is a direct consequence of this and the lemma of 3.

Let us return to the consideration of the preceding section, re-
taining the notation used there. We can now state the following
theorem, whose proof will be given in a separate paper.

THEOREM. Let Co be the set of the points t at which the curve
(t) is unilaterally continuous, and Eo the Borel set of the points
t at each of which one at least of (p)x(t) and (p)y(t) exists and is

infinite. Then, for any bounded Bord set XCo,

RE1KARK. Of course o need not be continuous on the same side
at all points of the set Co.
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