31. Convergence to a Stationary State of the Solution of Some Kind of Differential Equations in a Banach Space

By Hiroki Tanabe
(Comm. by K. Kunugi, m.J.A., March 13, 1961)

1. Introduction. The purpose of this note is to investigate the behaviour at $t=\infty$ of the solution $x(t)$ of some type of differential equation

$$
\begin{equation*}
d x(t) / d t=A(t) x(t)+f(t) \tag{1.1}
\end{equation*}
$$

in a Banach space \mathfrak{X}. Roughly speaking, if $A(t)$ and $f(t)$ have some properties and if both of them converge in some sense as $t \rightarrow \infty$, then the solution $x(t)$ also converges to some element as $t \rightarrow \infty$.
2. Assumptions and the theorem. By Σ we denote the set of all the complex numbers λ satisfying $-\theta \leqq \arg \lambda \leqq \theta$, where θ is a fixed angle with $\pi / 2<\theta<\pi$.

Assumption 1°. For each $t, 0 \leqq t<\infty, A(t)$ is a closed additive operator which maps a dense subset of \mathfrak{X} into \mathfrak{X}. The resolvent set $\rho(A(t))$ of $A(t), 0 \leqq t<\infty$, contains Σ and the inequality

$$
\begin{equation*}
\left\|(\lambda I-A(t))^{-1}\right\| \leqq M /(|\lambda|+1) \tag{2.1}
\end{equation*}
$$

is satisfied for each $\lambda \in \Sigma$ and $t \in[0, \infty)$, where M is a positive constant independent of λ and t.
2°. The domain D of $A(t)$ is independent of t and the bounded operator $A(t) A(s)^{-1}$ is Hölder continuous in t in the uniform operator topology for each fixed s;

$$
\begin{gather*}
\left\|A(t) A(s)^{-1}-A(r) A(s)^{-1}\right\| \leqq K|t-r|^{\rho} \\
K>0, \quad 0<\rho \leqq 1, \quad 0 \leqq t, r<\infty \tag{2.2}
\end{gather*}
$$

where K and ρ are positive constants independent of t, r and s.
3°. $f(t)$ is uniformly Hölder continuous in $0 \leqq t<\infty$:

$$
\begin{equation*}
\|f(t)-f(s)\| \leqq F(t-s)^{r}, \quad F>0,0<r \leqq 1,0 \leqq s, t<\infty, \tag{2.3}
\end{equation*}
$$

where F and γ are some constants independent of s and t.
4°. There exist a closed operator $A(\infty)$ with domain D and an element $f(\infty)$ of \mathfrak{X} such that

$$
\begin{equation*}
\left\|(A(t)-A(\infty)) A(0)^{-1}\right\| \rightarrow 0, \quad\|f(t)-f(\infty)\| \rightarrow 0 \tag{2.4}
\end{equation*}
$$

as $t \rightarrow \infty$.
Theorem. Under the assumptions made above, the solution $x(t)$ of (1.1) converges to some element as $t \rightarrow \infty$. The limit $x(\infty)$ belongs to D and satisfies

$$
\begin{equation*}
A(\infty) x(\infty)+f(\infty)=0 \tag{2.5}
\end{equation*}
$$

Moreover, $d x(t) / d t$ tends to 0 as $t \rightarrow \infty$.
It might be possible to make a similar observation about the kind of equations investigated by Prof. T. Kato. Such equations
are assumed to satisfy the weaker assumptions that, for some natural number $l, A(t)^{-1 / l}$ has a domain independent of t and $A(t)^{1 / l} A(s)^{-1 l}$ is Hölder continuous with some exponent $>1-1 / l$. But very complicated computations would be needed in order to deduce a similar result as above for such kind of equations.
3. The proof of the theorem. By Assumption 1°, each $A(s)$ generates a semi-group $\exp (t A(s))$ of bounded operators and it satisfies

$$
\begin{align*}
& \|\exp (t A(s))\| \leqq N e^{-\alpha t} \tag{3.1}\\
& \|A(s) \exp (t A(s))\| \leqq L e^{-\alpha t} / t \tag{3.2}
\end{align*}
$$

for $0<t<\infty$ and $0 \leqq s \leqq \infty$, where N, L and α are some positive constants which are dependent only on M and θ. The fundamental solution $U(t, s)$ of (1.1) can be constructed as follows [1]:

$$
\begin{gather*}
U(t, s)=\exp ((t-s) A(s))+W(t, s), \tag{3.3}\\
W(t, s)=\int_{s}^{t} \exp ((t-\sigma) A(\sigma)) R(\sigma, s) d \sigma, \tag{3.4}\\
R(t, s)=\sum_{m=1}^{\infty} R_{m}(t, s), \tag{3.5}\\
R_{1}(t, s)=(A(t)-A(s)) \exp ((t-s) A(s)), \tag{3.6}\\
R_{m}(t, s)=\int_{s}^{t} R_{1}(t, \sigma) R_{m-1}(\sigma, s) d \sigma,
\end{gather*}
$$

$$
\begin{equation*}
m=2,3, \cdots . \tag{3.7}
\end{equation*}
$$

For the sake of simplicity, we assume $\rho=1$. In what follows, we denote by C constants which depend only on M, θ, K and $\rho(=1)$. If we put

$$
\begin{gather*}
\sup _{\substack{s>\geq \geq \\
0 \leq r \leq \infty}}\left\|(A(t)-A(s)) A(r)^{-1}\right\|=\eta(\tau) \tag{3.8}\\
\sup _{t>0 \geq r}\|f(t)-f(s)\|=\delta(\tau), \tag{3.9}
\end{gather*}
$$

both of the right members tend to 0 as $\tau \rightarrow \infty$ by assumptions. By (2.2) and (3.8), we have

$$
\begin{equation*}
\left\|(A(t)-A(s)) A(s)^{-1}\right\| \leqq \sqrt{K} \sqrt{\eta(\tau)}(t-s)^{\frac{1}{2}}, \tag{3.10}
\end{equation*}
$$

hence

$$
\begin{equation*}
\left\|R_{1}(t, s)\right\| \leqq \sqrt{K} L \sqrt{\eta(\tau)}(t-s)^{-\frac{1}{2}} e^{-\alpha(t-s)} \tag{3.11}
\end{equation*}
$$

for any $t>s \geqq \tau$. Induction argument shows that for any $m \geqq 1$,

$$
\begin{align*}
& \left\|R_{m}(t, s)\right\| \\
& \leqq(\sqrt{K} L \sqrt{\eta(\tau)})^{m} e^{-\alpha(t-s)}(t-s)^{\frac{m}{2}-1} \Gamma\left(\frac{1}{2}\right)^{m} / \Gamma\left(\frac{m}{2}\right) . \tag{3.12}
\end{align*}
$$

Using a rough estimate

$$
\sum_{m=1}^{\infty} \alpha^{m-1} / \Gamma(m / 2) \leqq 3 \exp \left(2 d^{2}\right), \quad d>0
$$

we obtain

$$
\begin{equation*}
\|R(t, s)\| \leqq 3 \Gamma(1 / 2) \sqrt{K} L \sqrt{\eta(\tau)}(t-s)^{-\frac{1}{2}} \exp \left\{-\beta^{\prime}(\tau)(t-s)\right\} \tag{3.13}
\end{equation*}
$$

where $\beta^{\prime}(\tau)=\alpha-2 \pi K L^{2} \eta(\tau)$. As in the proof of Lemma 1.2 of [1], we also obtain for $t>\sigma>s \geqq \tau$ that,

$$
\begin{align*}
& \|R(t, s)-R(\sigma, s)\| \\
& \leqq C \sqrt{\eta(\tau)} e^{-\beta(\tau)(\sigma-s)}\left\{\frac{(t-\sigma)^{\frac{1}{2}}}{t-s}+\frac{t-\sigma}{(t-s)(\sigma-s)^{\frac{1}{2}}}\right. \\
& \left.+\left(\frac{t-\sigma}{t-s}\right)^{\frac{1}{2}} \log \frac{t-s}{t-\sigma}+\left(\frac{t-\sigma}{t-s}\right)^{\frac{1}{2}}\right\} \tag{3.14}
\end{align*}
$$

where $\beta(\tau)$ is some function less than $\beta^{\prime}(\tau)$, and that

$$
\|A(t)\{\exp ((t-s) A(s))-\exp ((t-s) A(t))\}\|
$$

$$
\begin{equation*}
\leqq C e^{-\alpha(t-s)} \sqrt{\eta(\tau)}(t-s)^{-\frac{1}{2}} \tag{3.15}
\end{equation*}
$$

The following two inequalities are the direct consequences of (3.14) and (3.15):

$$
\begin{gather*}
\left\|\int_{s}^{t} A(t)\{\exp ((t-\sigma) A(\sigma))-\exp ((t-\sigma) A(t))\} R(\sigma, s) d \sigma\right\| \\
\leqq C \sqrt{\eta(\tau)} e^{-\beta(\tau)(t-s)}(t-s)^{\frac{7}{2}} \tag{3.16}\\
\left\|\int_{s}^{t} A(t) \exp ((t-\sigma) A(t))(R(\sigma, s)-R(t, s)) d \sigma\right\| \\
\leqq C \sqrt{\eta(\tau)} e^{-\beta(\tau)(t-s)}\left\{(t-s)^{-\frac{1}{2}}+1\right\} \tag{3.17}
\end{gather*}
$$

By (3.13), (3.16) and (3.17) as well as the formula (1.21) of [1], we readily obtain

$$
\begin{equation*}
\|A(t) W(t, s)\| \leqq C \sqrt{\eta(\tau)} e^{-\beta(\tau)(t-s)}\left\{(t-s)^{\frac{1}{2}}+(t-s)^{-\frac{1}{2}}+1\right\} . \tag{3.18}
\end{equation*}
$$

On the other hand, by (2.3) and (3.9), we get

$$
\begin{equation*}
\|f(t)-f(s)\| \leqq \sqrt{F} \sqrt{\delta(\tau)}(t-s)^{\frac{\tau}{2}} \tag{3.19}
\end{equation*}
$$

for $t>s \geqq \tau$, therefore we obtain

$$
\begin{gather*}
\left\|\int_{\tau}^{t} A(t) \exp ((t-s) A(s))(f(s)-f(t)) d s\right\| \\
\leqq\left(\frac{1}{\alpha}+\frac{2}{\gamma}\right) L \sqrt{F} \sqrt{\delta(\tau)} \tag{3.20}
\end{gather*}
$$

assuming $t+1>\tau$ without restriction. Similarly

$$
\begin{gather*}
\left\|\int_{\tau}^{t} A(t)\{\exp ((t-s) A(s))-\exp ((t-s) A(t))\} f(s) d s\right\| \\
\leqq C \sqrt{\eta(\tau)} \sup _{\xi}\|f(\xi)\| \tag{3.21}
\end{gather*}
$$

By (3.1), (3.20) and (3.21) together with a formula in the proof of Theorem 1.3 in [1], we obtain

$$
\begin{align*}
& \|A(t) x(t)+f(t)\| \leqq\|A(t) U(t, \tau) x(\tau)\|+C e^{-\alpha(t-\tau)} \sup \|f(\xi)\| \\
+ & C \sqrt{\eta(\tau)} \sup \|f(\xi)\|+\left(\frac{1}{\alpha}+\frac{2}{\gamma}\right) L \sqrt{F} \sqrt{\delta(\tau)}+C \sqrt{\eta(\tau)} \beta^{\prime \prime}(\tau)^{-1} \sup \|f(\xi)\| \tag{3.22}
\end{align*}
$$

for sufficiently large τ, where $\beta^{\prime \prime}(\tau)$ is a positive function which is bounded away from 0 for these values of τ. Let ε be any positive number. Then we can select τ so large that the sum of the last
three terms of the right member of (3.22) is less than $\varepsilon / 2$. After fixing τ arbitrarily as above, we can make the sum of the remaining terms less than $\varepsilon / 2$ by taking t sufficiently large. Thus we have proved that

$$
\begin{equation*}
A(t) x(t)+f(t) \rightarrow 0 \text { as } t \rightarrow \infty . \tag{3.23}
\end{equation*}
$$

As $f(t)$ tends to $f(\infty)$ by assumption, $A(\infty) x(t)=A(\infty) A(t)^{-1} A(t) x(t)$ tends to $-f(\infty)$ and $x(t)=A(\infty)^{-1} A(\infty) x(t)$ to $-A(\infty)^{-1} f(\infty)$ which we denote by $x(\infty)$. Clearly, $x(\infty)$ satisfies (2.5). As $x(t)$ is the solution of (1.1), $d x(t) / d t$ tends to 0 by (3.23).

Reference

[1] H. Tanabe: On the equations of evolution in a Banach space, Osaka Math. Jour., 12, 363-376 (1960).

