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31. Convergence to a Stationary State o[ the Solution o[ Some
Kind o Differential Equations in a Banach Space

By Hiroki
(Comm. by K. KoNoO, U.S.A., March 18, 1961)

1. Introduction. The purpose of this note is to investigate the
behaviour at t-o of the solution z(t) of some type of differential
equation

d(t)ldt=A(t)(t) +f(t), (1.1)
in a Banach space . Roughly speaking, if A(t) and f(t) have some
properties and if both of them converge in some sense as t-o, then
the solution z(t) also converges to some element as t-o.

2. Assumptions and the theorem. By Z we denote the set of
all the complex numbers a satisfying -0arg a0, where 0 is a fixed
angle with /2< <..

Assumption 1. For each t, 0t< co, A(t) is a closed additive
operator which maps a dense subset of into . The resolvent set
p(A(t)) of A(t), 0t< o, contains Z and the inequality

II (2I-A(t))-’ II M/(I a I+ 1) (2.1)
is satisfied for each e X and t [0, o), where M is a positive constant
independent of and t.

2. The domain D of A(t) is independent of t and the bounded
operator A(t)A(s)- is HSlder continuous in t in the uniform operator
topology for each fixed s;

II A(t)A(s)---A(r)A(s)- II KIt--rl",
K>0, 0<e l, 0 t, (2.2)

where K and are positive constants independent of t, r and s.
3. f(t) is uniformly HSlder continuous in 0t<

Ilf(t)-f(s)ll F(t-s) F>O, 0<r l, 0 s, (2.3)
where F and T are some constants independent of s and t.

4. There exist a dosed operator A(o) with domain D and an
element f(o) of such that

II (A(t)--A(oo))A(O)- I1-’0, IIf(t)--f(o) I1-,0 (2.4)
as

Theorem. Under the ssumptions made above, the solution z(t) of
(1.1) converges to some element as to. The limit (oo) belongs to
D and satisfies

A(o)x(o)Tf(o)--0. (2.5)
Moreover, dx(t)/dt tends to 0 as t-o.

It might be possible to make a similar observation about the
kind of equations investigated by Prof. T. Kato. Such equations
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are assumed to satisfy the weaker assumptions that, for some natural
number l, A()-/ has a domain independent of and A()/A(s)- is
Hlder continuous with some exponent 1--1ft. But very complicated
computations would be needed in order to deduce a similar result as
above for such kind of equations.

3. The proof of the theorem. By Assumption 1, each A(s)
generates a semi-group exp (tA(s)) of bounded operators and it satis-
fies

II exp (tA(s)) II Ne-’ (3.1)
II A(s) exp (tA(s))II Le-’# (3.2)

for 0<:<oo and 0soo, where N, L and a are some positive con-
stants which are dependent only on M and 8. The run.mental solu-
tion U(t, s) of (1.1) n constructed as follows [1]"

U(t, s)exp ((t--s)A(s))+ W(t, s), (3.3)

w(t, s)- --f’exp fit- a)A(a))R(a, s)da, (3.4)

R(t, s)= R=(t, s), (3.5)

R(t, s)--(A(t)--A(s)) exp ((t--s)A(s)), (3.6)

R(t, a)R=_,(a, s)da,

m=2, 3,.... (3.7)
For the ke of simplicity, we assume p=l. In what follows, we
denote by C constants which depend only on M, , K and p(--1). If
we put

sup ]] (A(t)--A(s))A(r)- ]--(r) (3.8)
Or

h og he rgh memrs nd o 0 as by sumons. By
(.) and (.8), we have

II (A(t)--A(s))A(s)- I[ (r)(t-- s)t, (3.10)
hence

R(t, s) Lg(r)(t--s)-ie-’’-’ (3.11)
for any t>sr. Induction argument shows that for any ml,

R (t,

--CL)’e-’(-’)Ct--s)-’P(VP(),2// C3.12)

Using a rough estimate

a’-/r(m/2)3exp (2d2), d>0

we obin

(3.13)
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where ’(v)--a--2rKL2](v). As in the proof of Lemma 1.2 of [1], we
also obtain for t>a sr that,

II R(t, s)-- R(a,

<c()-’--’ { (-)+ t-
t- (t-,)(-)

t--s t--a
where (r) is some function less than ’(r), and that

(t)[exp fit-s)A())-exp fit-s)A(t))}

The following two inequalities are the direct conquences of (3.14)
and (3.15):

II f’A(t){exp ((t-)A())--exp ((t--a)A(t))}R(, s)d I
c4()e-,,x’-’)(t-s) (3.16)

gC(r)e-’)(’-’){(t-s)-t+ 1}. (3.17)
By (3.13), (3.16) and (3.17) as well as the formula (1.21) of [1], we
readily obtain

]]A(t)W(t,s)]]Ce-oc’x’-’)[(t--s)tT(t--s)-t+l]. (3.18)
0n the other hand, by (2.3) and (3.9), we get

If(0-f()II ()(-) (3.19)
for t>sr, therefore we obtain

It f’A(t) exp ((t--s)A(s))(f(s)--f(t))dsll
(LT)L4) (3.20)

assuming SWl>r without restriction. Similarly

fA(){exp ((-s)A(s))-exp (($-s)A(O)}f(s)ds

c() sup llf()[[. (3.m)
By (3.1), (3.20) and (3.21) together with a formula in the proof of
Theorem 1.3 in [1], we obtain

A(0(0+f(0 I [[ A(0V(, )() [[ +Ce-’’-’ sup f()

( 2)L+Cz)"(r)-’ sup Ilf(’)II, (3.22)

for sufficiently large r, where "(r) is a positive function which is
unded away from 0 for the values of r. Let any sitive
numr. Then we can select r so large that the sum of the last
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three terms of the right member of (3.22) is less than /2. After
fixing r arbitrarily as above, we can make the sum of the remaining
terms less than /2 by taking sufficiently large. Thus we have
proved that

A()()-f()-0 as . (3.23)
As f(t) tends to f(o) by assumption, A()x(t)--A(o)A(t)-A(t)x(t)
tends to --f(oo) and x(t) A(c)-A(o)x(t) to A(oo)-f(o) which we
denote by x(oo). Clearly, x(o) satisfies (2.5). As x(t) is the solution
of (1.1), dx(t)/dt tends to 0 by (3.23).
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