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1. The algebraic dimensions of invariant groups (orthogonal
groups) of quadratic forms are uniquely determined by the number
of their variables. But, those of the invariant groups of -forms
(_3) are not uniquely determined with the number of their vari-
ables.

We shall determine two types of invariant groups of -forms,
the one’s algebraic dimension is zero1) and the other’s is not zero.

2. Let k be a field of characteristic 0, and V be an -dimensional
vector space over b. We shall say, F(X) is an m-form defined on V,
if there exists a symmetric m-linear form f(XC’, Xc, X’) defined
on the direct product of -copies of V, such that F(X)--f(X, X,...,
X). Every homogeneous polynomial with -variables and of degree

is an -form.
For an m-form F(X), the F-radical N of V, is a subspace of

V consisting of all vectors X, which satisfy the equation f(X, X-,
.., X-, X)=0, for any vectors X," X, ..., X-’, in V.

If N0 then we shall say that F(X) is non-degenerate, and if
N=0, degenerate. When F(X) is degenerate, there exists the non-
degenerate m-form defined on V/N, induced by F(X).

We shall use E(V)to denote the ring of b-linear endomorphisms
of V, and G(F), the subset of E(V) consisting of all endomorphisms
i which leave F(X) invariant, i.e. F(X)=F(X.A).

Proposition 1. If F(X) is non-degenerate, G(F) is a group.
Proof. We have to show that every endomorphism /, belonging

to G(F) is an automorphism of V.
If / is not an automorphism, there exists a non-zero vector X

in V, which satisfies X. A=O. Then
f(X", X’", X"-", X)=f(X’". /, X’-’. .//, ., X"-". A, X.,)=0

or any vectors X’, X), ..., X-x). This implies that N, contains
non-zero vector X. And this contradiction shows that A is an auto-
morphism.

If F(X)=S], az’, then we shall say that F(X) is a diagonal orm.
Proposition 2. When F(X) is a diagonal form, then F(X) is o-

1) The algebraic dimensions of the invariant groups of m-forms are zero, if and
only if the group is a finite group (cf. C. Chevalley: Thorie des Groupes de Lie,
Hermann, Paris (1951)).
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degenerate, if and only if II aO.
Proof. We can prove easily from the definitions.
Let C be the cyclic group generated by a primitive m-th root

of 1, and S be the symmetric group of n-letters. The multiplicative
group of non-zero elements of k will be denoted by k*. And we shall
use C2 to denote k*C.

Proposition 3. Let m>_3. If k is algebraically closed and F(X)
is a non-degenerate diagonal form, then G(F) is isomorphic to the
semi-direct product of S and the direct product of n-copies of C.

Proof. It follows immediately from Prop. 2 and the condition of
Prop. that we can assume all a/s are 1. And we shall represent an
automorphism 1 of V as a non-singular matrix (u). If (u) belongs
to G(F), then, comparing the coefficients of the terms
(where a, l<_/_<n) of F(X) and F(X.O, we have the following
equations:

0

for all 1 _</_< n.
Because (u) is non-singular, we have
( i ) 4 -o
for all a, l_v_n.

It is easily seen that all permutation matrices are contained in
G(F). So, we can assume =0, multiplying some permutation matrix
to the right side of l. Then from (1), ,--0 for all 2_</<_n. By
the induction with respect to /4 we can find a permutation matrix P
and a diagonal matrix D, whose product is equal to .4. If D--(du)
(where d#--0, if ij), then from the fact that l and P belong to
G(F), D belongs to G(F). So d-l, for all l<_i<_n. Thus G(F) is
generated by the direct product of n-copies of C and S.

It is easily seen that the direct product of n-copies of C is the
normal subgroup of G(F), and the intersection of S and the direct
product of n-copies of C, contains only the identity matrix. This
completes the proof.

For non-zero elements a, b, in k, we shall say a and b to be in
the same class, if there exists an m-th root of a/b in k. And, if a
and b are in the same class, we denote a=b. When F(X) is a
diagonal form, for the coefficients of F(X) we can assume that

a+l ---a+

a(++...+r)+l
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(where a+fl+. +r+--n, and a#a+a,. ., a----an,. ., ac,+a+...+r) #
an)

THEOREM 1. Let m>_3. If F(X) is a non-degenerate diagonal

form and its coe2cients are as above, then G(F) is isomorphic to
the semi-direct product of, the direct product of S,, Sa,..., Sr and St,
and the direct product of n-copies of C).

Proof. Let k be the algebraic closure of k and let V be the

scalar extension of V with respect to k. We shall use G(F) to denote

the invariant group of F, on V. The general linear groups of V and

V are denoted by GL(V) and GL(V), respectively. Then we have

G(F)-G(F)GL(V).
Let b., b,..., b and b, be the m-th root of a., a,.--, a and a,

and let B be the diagonal matrix

b

Then, from Prop. 3, we can identify G(F) with the group,
B-{(C. C).S,}B. So, G(F)-(C... C).(B-S,B)GL(V).
And from this we can obtain the conclusion.

3. When F(X) is an m-form with m-variables, we shall say F(X)
is a multiple form) if F(X)--a.X.X. X (where a-- 0).

It is easily seen that multiple forms are non-degenerate and we
can assume a--1.

THEORE 2. If F(X) is a multiple form, then G(F) is iso-
morphic to the semi-direct product of S and the direct product of
(m--l) copies of k*.)

Proof. If A--(2)belongs to G(F), then, comparing the coefti-

cients of F(X) and F(XA), we have H ,,--0 for all 1_< /_<m. Mul-
=1

tiplying a permutation matrix to the right side of A, we can assume
0 and -0.

When 0, 2.------.------0, (where 2<_r<n), let J be the
set of numbers j, for which #--0 (2_<_<r). We denote by e(a)the

2) If K is a separable extension of k of degree m, K has a structure of vector
space over k. Then, the norm form relative to the extension K/k is an m-form, and
it is equivalent to a multiple form in K.k/k, where ] is an algebraic closure of k
(cf. T. Ono: On algebraic groups defined by norm forms of separable extensions,
Nagoya Math. J., 11).

3) In this case the algebraic dimension of G(F) is (m-l).
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number of J which contains a (l_a_m). And, among the which
has the largest e(), we pick the minimal one and denote it to be o.

Let {J} be all J.’s that do not contain ao. And we determine o
from these {J} just as ao from {J,}, and so on. Thus, we have the
system (ao, o,’" ", 7o), where 2ao, o,’" ", 7o and e(ao) +e(o)+."
+e(70)=--1. For this system, comparing the cfficients of the term
x-+ ,o) <o .,c.) of F(X) and F(X), we have + 2+-ao o

=0. So, we can assume +=0, multiplying a rmutation ma-
trix to ,4. Thus, we have proved that 22:2--..-=2:0. Then,
from this it is easily sn that 22=2=--.=2=0. By the induc-
tion with resct to m, we can prove tt A is equal to the product
of a diagonal matrix D and a rmutation matrix P.

Let the subgroup of G(F) generated by all diagonal ma-
trices of G(F). Then it is easily seen that is the normal subgroup
of G(F) and is isomorphic to the direct product of (m--l) copies of
k*, and S=(I). This completes the proof.


