200 [Vol. 37,

48. On the Definition of the Cross and Whitehead Products
in the Axiomatic Homotopy Theory. II

By Ryosuke NAKAGAWA
Department of Mathematics, Tokyo University of Education
(Comm. by K. KUNUGI, M.J.A., April 12, 1961)

1. Introduction. In the preceding paper I, we have described
the definition of the cross and Whitehead products. In this paper we
shall show a few properties of the cross and Whitehead products as
consequences of their definition and prove the existence and unique-
ness of these products.

2. Immediate consequences from the axiom. Consider two maps
Fi1(X, 2)~>(X", o) and g:(Y,y,)>(Y", ¥} and let fxg:(XXY, XvY,
(@0 Yo))>(X' XY, X'VY’, (3, 9:)) be a map defined by (f X 9)(x, ¥)=(f (),
9()).

Proposition 1. For aen, (X, x,), Bern (Y, Y,), we have

(f X g)y(aX f)=Fya X gyB.

This is easily proved and the proof is omitted.

Now let 7: XXY—>Y X X be a map such that =(z, y)= (v, x).

Proposition 2. For acer,(X, x,), Ben. (Y, ¥,), we have
(1) tg(a X B)=(—1)""(BX a).

In order to prove this, we shall need the following lemma, whose
proof will be omitted.

Lemma 3. Let f, g:(X, x,)>(Y, ¥,) be H-homomorphisms between
H-spaces X and Y with units x, ¥y, respectively. An H-homomor-
phism h=f-g:(X, z,)—>(Y, y,) is defined by h(x)=f(x)-9(x), zc X. Then
we have hy(a)=fy(a)+94(a), for acn (X, x,), n>0. If X and Y are
loop spaces, n(X, x,) and =,(Y,y,) may be considered as groups. In
this case the above relation holds also.

Proof of Prop. 2. In cases m=n=0; m=0, n>0; m>0, n=0,
we can show directly by definition that the formula (1) holds. Now
we assume that the formula (1) holds for k<m, l<n. Let 02r:
PXXQY—>QRY XX, 7/: XvY—>YvX and 27 : 2XvY)>2(YvX) be
maps induced by z. Then Qory(aXp)=027%d(a X p)=(27")428(aX p)
=(—=1)""Y(27)304(Ra X 2B)=(—1)""((2") o ) (R X 2B). A map (27')~
¢: QXXQY—>Q(Y v X) is defined by ((27') > ©)(%, ¥)= 0, %)Y, To)(Yo» 77)
(¥, z,). On the other hand, (¢ o (27))(x, ¥)=(¥, Z)Yo, )Y, £.)(Yo, T~1).
Therefore (27')cp=(¢°(27))"!. By Lemma 3, we have ((2<)-¢),
= —(p°(27));. Hence Qory(aX B)=(—1)"(¢o(27)),(Qa X 2B)=(—1)"(¢,°
(22)4)(Qa X 2B)=(—1)*¢,((—1)™ " (QB X Qa))=(—1)""R3(B X ).
Thus we have zy(aXB)=(—1)""fXa.
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Corollary 4. Let f:(X,x,)>(X',x}) and let aer, (X,,), fem X, Z,).
Then we have the following formulas:

f#[a, AB] =[f#a’f#‘3]’
[a, B1=(=1)""[B, a].

3. Existence and uniqueness. In this section we shall construct
a cross product operation in a given axiomatic homotopy theory H
={r, #, 6} and show its uniqueness.

Let aen, (X, x,), Ben(Y,¥,). Then aXp is well defined for m or
n=0 by definition. Now let m>0, n>0 and assume that aXp is
already constructed for each k<m and l<n. Then we have 2 '¢,
(RaX02B)enp.n(XVY, (2, ¥,) and if we show that 2-1¢,(QaX2p)e
Image 0:7,..(XXY, XVY, (X, Y0)) > Tpsn-(XVY, (2, ¥,), We can con-
struct a X B8 such that the axiom is satisfied. Let p: XXY—>X,q¢: X
X Y—>Y be projections and let p: XvY—>X,q: XvY—>Y be restricted
maps of p and g respectively.

Lemma 5. Let n>1. A boundary homomorphism o:n,(XXY,
XvY, (%, ¥y)> . (XVY, (%, ¥y)) ©8 @ monomorphism. Moreover, we
have Image 0= Kernel 7, where 7 is a homomorphism of =, (XVY,
(%0, ¥o)) to a direct product =, (X, x)Xr, (Y,y,) defined by 7(a)
=(py(a), T4(a)).

This lemma can be proved in the axiomatic homotopy theory and
the proof is omitted.

Now let 2p: 2(XvY)—>0QX be a map induced by p. Then p,Q!
?,(Qa X 2B) = 27 (2D) 32, (Qa X 2B)= Q2 H(2P > ¢),(2a X 28) =0, because
0po¢p~0. Similarly, 42 '¢,(2a X 28)=0. By Lemma 5, we have 27 '¢,
(Ra X 2B)cImage a.

Since 9 is a monomorphism, it is noted that the element aXp
satisfying the formula 0Q6(aXpg)=(—1)""'¢,(2aX2B) is uniquely de-
termined.

Two homotopy theories with cross products H={r, #,d, X}, H
={=, ¥, 9, X} are said to be equivalent if there exists an equivalence
h={h,} between H={x, %,0} and H={z, #, 3} (cf. [2]) such that &,
(aXB)=hnaXh,p for acn, (X, x,), Bem (Y, Yo)-

It can be easily seen from the above considerations that any two
homotopy theories with cross products are equivalent.

The existence and uniqueness of the Whitehead product operation
can be obtained directly by the above results.

4. Usual cross products. To conclude this paper, we shall show
that the usual cross product operation satisfies the conditions described
in the preceding paper I, §2.

We recall the definition of the cross products in the usual homoto-
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py theory.® Let f:(I™ I™—(X,x,) and g:(I", I*)>(Y,,) be repre-
sentatives of aen,(X,x,) and Ben,(Y,y,) (m>0, n>>0) respectively.
Define a map h:(I™XI", (I™"XI"))>(XXY, XvY) by h(x, v)=(f(x),
9(%)). The element aX B of z,.,(XXY, XvY, (2, ¥,) represented by
k depends only on a and B and is called a cross product of « and B.
For m or n=0, a X8 has not been defined. But in this case, if we
define a X8 by the conditions in I, §2, (a) and (b), we have

Theorem 6. The usual cross product operation satisfies the
axiom of cross products described in I, §2.

Proof.”? We shall prove the theorem for the case m>1, n>1.
The other cases can be treated by slight modifications. Let f':(I™"!,
I™Y—>(QX, x,), 9': (I, [*")>(QY, ¥,) be maps defined by sf'(x)(t)
=f(z,t), 9W)t)=9(y,t) for xeI™*, yel*?, tel. Then they represent
Qacer,_(2X, x,) and QBer,_ (2Y,y,) respectively and QaX2Ben,. s
(RXXQY, 2XvQY, (x,¥,) is represented by a map h':(I™xI*!,
I XI*Y))>(RXXQY, 2XvQY) such that A'(z, ¥)=(f"(x), 9¥)).
We shall show that

o{h}=(—1)"""2 "¢, {n’}.

Define a map @: (I™'XI**XI)>Q(XvY) by

oh'(x, y), (x, y)eI™'XI*", t=0,
O(x, y, t)={ H(W'(z, y), t), (x, y)e(I™ X I, tel,
(%) Yo), (@, y)eI™ ' xXI*, t=1,

where H is a null-homotopy of ¢ |2XvQY defined in I, §2. Then
it can be shown by a straightforward caleculation that @ represents
¢,{h'}. Now define a map
(I XIXI"'XI)y->XvY by
/ —_ (wo, ?/o): teI"
¥ (@1 y, 8)= { o(x,y,s)(t),  otherwise.
Then we have that @ represents (—1)" Y{@}=(—1)""'¢,{h’}. On the
other hand, define a map d:I 25 ]2 by
(4¢, 0), 0=t<},
(1,4¢-1), =i<y,
d,0=)(3-4,1), 3=<t<t,
(0,4—4¢), j=<t<1,
d(1, s)=d(t, 1)=d(0, 8)=(0, 0),
and extend d to I® linearly. Let p,, »,: IXI—>I be projections such
that p,(t, 8)=t, py(t,s)=s. Then if we define a map D: (™ *XIxI"!
1) Cf. [1] or [4].
2) M. Tsuda pointed out that the same technique has been used by H. Samelson
in the proof of his Theorem 1 in [8]; that is, if a€mun(X, %), B€n.(X, xo), m>1, n>1,
then hQ[e, Bl=(—1)""Y(hQe * hQB—(—1)™-D®-DLOR ¥ hbQe), where h denotes the Hure-

wicz homomorphism and * the Pontryagin product in Hx(2X).
Added in proof. See also [5].
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XI)y—>I™*XIXI*'XI) by D(z,t,y,s)=(x, p,d(t, s), y, p.d(t, s), D is
a deformation. Let h=h |[(I™XI"*). Then we can prove that hoD=@
rel. 0 in XvY and this implies that

R0(a X f)=(—1)""p,(Qa X 2B).

The relation between the ecross products and the Whitehead
products in the usual theory is well known. Therefore the White-
head product operation defined in I, § 2 coincides with the usual one
in the usual homotopy theory.

References

[1] Blakers, A. L., and Massey, W. S.,: Products in homotopy theory, Ann. of Math.,
(2) 58, 295-324 (1953).

[2] Hu, S. T.,: Axiomatic approach to the homotopy groups, Bull. A.M.S., 62, 490-
504 (1956).

[38] Samelson, H.,: A connection between the Whitehead and the Pontryagin product,
Amer. J. Math., 76, 744-752 (1953).

[4] Whitehead, G. W.,: A generalization of the Hopf invariant, Ann. of Math., (2)
51, 192-237 (1950).

[6] Berstein, I., and Genea, T.,: Homotopy nilpotency, Illinois J. Math., 5, 99-130
(1961).



